期刊文献+

结合三帧差分和肤色椭圆模型的动态手势分割 被引量:11

Dynamic Gesture Segmentation Combining Three-frame Difference Method and Skin-color Elliptic Boundary Model
下载PDF
导出
摘要 针对手势识别系统中的手势分割部分提出了一种改进的结合三帧差分法和肤色椭圆边界模型的动态手势分割方法。运用三帧差分法提取动态手势的运动特征,初步确定手势所在区域,然后运用肤色椭圆边界模型对该区域进行肤色判别从而确定目标。通过提取双特征,可有效解决复杂背景下大面积肤色背景被误检的问题。通过合理设置运动检测过程中的阈值,可有效去除运动幅度较小的人脸和裸露手臂部分。同时针对三帧差分法不能检测静态手势进行了改进,使提出算法对视频流中手势的短暂停留具有极强的鲁棒性。实验结果表明,提出算法能准确高效的检测出动态手势,适用于动态手势识别等实时系统中。 A novel dynamic gesture segmentation method is proposed by combining three-frame difference method and skin-color elliptic boundary model. Firstly, the possible dynamic gesture region is determined by extracting the target property of movement via three-frame difference method, and then the target area is gotten by skin-color detection in the possible region using skin-color elliptic boundary model. By extracting double features of dynamic hand gestures, the proposed method can effectively solve the problem that the large area of skin-color background was mistakenly identified as hands. The area of face and bare arms are removed by setting a reasonable threshold. Furthermore, for overcoming the shortcoming of traditional three-frame difference method that cannot detect static gestures, the proposed method has been improved and shown robustness on relative static gestures. The experimental results demonstrate the efficiency for dynamic hand gestures segmentation and the proposed method is suitable for real-time systems such as dynamic gesture recognition.
出处 《光电工程》 CAS CSCD 北大核心 2016年第6期51-56,共6页 Opto-Electronic Engineering
基金 国家自然科学基金(61303203) 沪江基金(B14002/D14002) 上海高校青年教师培养计划资助
关键词 动态手势分割 三帧差分法 肤色椭圆边界模型 手势识别系统 dynamic gesture segmentation three-frame difference skin-color elliptic boundary model gesture recognition systems
  • 相关文献

参考文献2

二级参考文献25

  • 1Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 2Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 3Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 4Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 5Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.
  • 6Wen-Chung Chang;Chih-Wei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Published by Institute of Electrical and Electronics Engineers,Inc. ,2010,40(3):892- 902.
  • 7Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[A]. In Proceeding of International Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, HI,USA 2001,1:511 - 518.
  • 8Viola P, Jones M. Robust real-time face detection[J].International Journal of Computer Vision, Published by Springer, 2004,57(2) :137 - 154.
  • 9Lienhart R,Maydt J. An extended set of Haar-like features for rapid object detection[ A]. The IEEE International Conference on Image Processing [ C ]. New York, USA, 2002, 1 : 900 - 903.
  • 10Freund Y, Schapire R E. Experiments with a New Boosting Algorithrn[ A]. In Proceedings of the 13th Conference on Machine Learning, Morgan Kanfmann[ C]. USA, 1996,148 - 156.

共引文献100

同被引文献77

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部