摘要
The facile preparation of Ag NPs/C via a one-pot strategy was carried out by microwave treatment of a mixed aqueous solution of AgNO3 and glucose at 180 ℃ for 20 min without the presence of extra reducing agent. The as-synthesized Ag NPs/C showed high catalytic performance toward the reduction of H2O2. The H2O2 sensor constructed with as-synthesized Ag NPs/C exhibited a short amperometric response time of less than 2 s. The linear range was approximately (0.1-50) mmol/L(r=0.997), and the detection limit was approximately 3.3 μmol/L at a signal-to-noise ratio of 3. A glucose biosensor was fabricated by immobilizing glucose oxidase onto Ag NPs/C- modified glassy carbon electrode to detect glucose. The glucose sensor had a wide linear response range of 2-22 mmol/L(r=0.999) and a detection limit of 190 μmol/L.
The facile preparation of Ag NPs/C via a one-pot strategy was carried out by microwave treatment of a mixed aqueous solution of AgNO3 and glucose at 180 ℃ for 20 min without the presence of extra reducing agent. The as-synthesized Ag NPs/C showed high catalytic performance toward the reduction of H2O2. The H2O2 sensor constructed with as-synthesized Ag NPs/C exhibited a short amperometric response time of less than 2 s. The linear range was approximately (0.1-50) mmol/L(r=0.997), and the detection limit was approximately 3.3 μmol/L at a signal-to-noise ratio of 3. A glucose biosensor was fabricated by immobilizing glucose oxidase onto Ag NPs/C- modified glassy carbon electrode to detect glucose. The glucose sensor had a wide linear response range of 2-22 mmol/L(r=0.999) and a detection limit of 190 μmol/L.
基金
Supported by the National Natural Science Foundation of China(No.21175129), the National Basic Research Program of China(No.2011CB935800) and the Scientific and Technological Development Plan Project of Jilin Province, China(No. 20100534).