期刊文献+

双压电材料三维界面端部力电耦合场奇异性

Electromechanical Fields at Three-Dimensional Interface Edge Between Two Bounded Piezoelectric Materials
下载PDF
导出
摘要 基于切口根部物理场的幂级数渐近展开假设,从三维应力平衡方程和麦克斯韦方程组出发,导出关于双压电材料楔形界面切口端部奇性指数的特征微分方程组,并将切口的力电学边界条件表达为奇性指数和特征角函数的组合,从而将双压电材料楔形界面切口端部奇性指数的计算转化为相应边界条件下常微分方程组特征值的求解,运用插值矩阵法求解界面端部若干阶应力奇性指数和相应特征函数.计算结果与已有结果对比表明本文方法的有效性和具有较高的计算精度. With asymptotic assumption for physical field near notch tip, characteristic differential equations for electroelastic singularities of wedges that contain bounded piezo/piezo materials are built from three-dimensional equilibrium equations and Maxell equations. Mechanical and electric boundary conditions are expressed by combination of singularity orders and characteristic angle functions. Thus, evaluation of singularity orders is transformed into solving ordinary differential equations (ODEs) under designated boundary conditions. Interpolating matrix method is introduced to solve derivative ODEs. More electroelastic singularity orders and associated eigenfunctions in wedges that comprise two bounded transverse isotropic piezoelectrics materials are obtained. It shows that the method is efficient and has high accuracy compared with existent solutions.
出处 《计算物理》 CSCD 北大核心 2016年第1期57-65,共9页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11372094) 安徽省教育厅(TSKJ2014B16和TSKJ2014B13)资助项目
关键词 奇异性 压电材料 渐近展开 特征函数 插值矩阵法 singularity piezoelectric material asymptotic expansion characteristic angle functions interpolating matrix method
  • 相关文献

参考文献15

二级参考文献102

  • 1王旭,王子昆.压电材料反平面应变状态的椭圆夹杂及界面裂纹问题[J].上海力学,1993,14(4):26-34. 被引量:17
  • 2孙建亮,周振功,王彪.功能梯度压电压磁材料中断裂问题分析[J].力学学报,2005,37(1):9-14. 被引量:23
  • 3曾云,胡元太,YANG Jiashi.压电反平面裂纹问题中的电场梯度效应[J].华中科技大学学报(城市科学版),2005,22(B05):31-35. 被引量:2
  • 4Zhang T Y, Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. International Journal of Solids and Structures, 1996, 33: 343-359.
  • 5Pak Y E, Goloubeva E. Electroelastic properties of cracked piezoelectric materials under longitudinal shear[J]. Mechanics of Materials, 1996, 24: 287-303.
  • 6Narita F, Shindo Y. Layered piezoelectric medium with interface crack under anti-plane shear[J]. Theoretical and Applied Fracture Mechanics, 1998, 30: 119-126.
  • 7Li X F, Tang G J. Antiplane interface crack between two bonded dissimilar piezoelectric layers[J]. European Journal of Mechanics-A: Solids, 2003, 22: 231-242.
  • 8Kwon S M, Lee K Y. Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading[J]. International Journal of Solids and Structures, 2000, 37 (35): 4859-4869.
  • 9Qin Q H. Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach[J]. Computational Mechanics, 2003, 31: 461-468.
  • 10Sze K Y, Wang H T, Fan H. A finite element approach for computing edge singularites in piezoelectric materials[J]. International Journal of Solids and Structures, 2001, 38: 9233-9252.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部