期刊文献+

社会网络中弱关系团队形成问题研究 被引量:2

Team Formation with Weak Ties in Social Networks
下载PDF
导出
摘要 随着在线社会网络的迅速发展,社会网络的团队形成问题逐渐成为研究热点。现有的社会网络中团队形成问题目标是寻找一个成员间沟通代价最小的团队。然而,实际应用中团队成员间的不紧密关系使得团队的观点多样化、多角度、无偏见,可以广泛应用于形成专家评审团队、大众评审团等。基于此需求,将社会学的弱关系概念引入团队形成问题中,提出了一种社会网络中弱关系团队形成问题。该问题旨在寻找成员间为弱关系,同时满足技能、经验值要求的一个团队,为NP-hard问题。提出了3类算法解决该问题,分别为贪心算法、精确算法、α-近似算法,每类算法有各自的特点与适用范围。利用ACM和DBLP两类真实的数据集进行实验,综合评估了各类算法的效率与求解质量,证明了提出算法的有效性。 As the online social network grows rapidly, the team formation problem becomes more and more popular. Previous research on team formation aimed at finding a team of experts with the lowest communication cost. However, in expert or public jury, as untighten relationship can guarantee diversified attitudes and refrain from prejudice, there are numerous quests which to find a weak connected team. Based on this requirement, this paper proposes the problem of team formation with weak ties in social networks by introducing the concept of weak ties in sociology. This prob-lem aims to find a team with weak ties between members and satisfy the requirement of skills and experience, it is an NP-hard problem. This paper designs three kinds of algorithms for the problem, they are greedy algorithm, exact algo-rithm andα-approximate algorithm. Every kind of algorithm has distinct property and scope. The experimental results on ACM and DBLP real datasets show the quality and confirm the effectiveness and efficiency of proposed algorithms.
出处 《计算机科学与探索》 CSCD 北大核心 2016年第6期773-785,共13页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61070024 61272180 高等学校博士学科点专项科研基金No.20120042110028 教育部-英特尔信息技术专项科研基金No.MOE-INTEL-2012-06~~
关键词 社会网络 团队形成 弱关系 贪心算法 精确算法 近似算法 social network team formation weak ties greedy algorithm exact algorithm approximate algorithm
  • 相关文献

参考文献17

  • 1Blondel V, Guillaume J, Lambiotte R, et al. Fast unfoldingof communities in large networks[J]. Journal of StatisticalMechanics: Theory and Experiment, arXiv:0803.0476.
  • 2柴变芳,赵晓鹏,贾彩燕,于剑.内容网络广义社区发现有效算法[J].计算机科学与探索,2014,8(9):1076-1084. 被引量:3
  • 3Kempe D, Kleinberg J, Tardos E. Maximizing the spread ofinfluence through a social network[C]//Proceedings of the9th ACM SIGKDD Conference on Knowledge Discoveryand Data Mining, Washington, USA, Aug 24- 27, 2003.New York, USA: ACM, 2003: 137-146.
  • 4Estevez PA, Vera PA, Saito K. Selecting the most influentialnodes in social networks[C]//Proceedings of the 2007International Joint Conference on Neural Networks, Orlando,USA, Aug 12- 17, 2007. Piscataway, USA: IEEE, 2007:2397-2402.
  • 5Lappas T, Liu Kun, Terzi E. Finding a team of experts in socialnetworks[C]//Proceedings of the 15th ACM SIGKDDConference on Knowledge Discovery and Data Mining,Paris, France, Jun 28- Jul 1, 2009. New York, USA: ACM,2009: 467-476.
  • 6Kargar M, An Aijun. Discovering top- k teams of expertswith/without a leader in social networks[C]//Proceedings ofthe 20th ACM International Conference on Information andKnowledge Management, Glasgow, UK, Oct 24- 28, 2011.New York, USA: ACM, 2011: 985-994.
  • 7Majumde A, Datta S, Naidu K. Capacitated team formationproblem on social networks[C]//Proceedings of the 18thACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining, Beijing, China, Aug 12-16, 2012.New York, USA: ACM, 2012: 1005-1013.
  • 8Anagnostopoulos A, Becchetti L, Castillo C, et al. Onlineteam formation in social networks[C]//Proceedings of the21st International Conference on World Wide Web, Lyon,France, Apr 16- 20, 2012. New York, USA: ACM, 2012:839-848.
  • 9Kargar M, Zihayat M, An Aijun. Affordable and collaborativeteam formation in an expert network, CSE-2013-01[R].Department of Computer Science and Engineering, YorkUniversity, 2013.
  • 10孙焕良,卢智,刘俊岭,于戈.图数据中Top-k属性差异q-clique查询[J].计算机学报,2012,35(11):2265-2274. 被引量:6

二级参考文献32

  • 1Boginski V, Butenko S, Pardalos P M. Statistical analysis of financial networks. Computational Statistics & Data Analysis, 2005, 48(2): 431-443.
  • 2Mascia Franco, Cilia Elisa, Brunato Mauro, Passerini An- drea. Predicting structural and functional sites in proteins by searching for maximum-weight cliques//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, USA, 2010:1274-1279.
  • 3Reddy P K, Kitsuregawa M, Sreekanth P, Rao S Srinivasa. A graph based approach to extract a neighborhood customer community for collaborative filtering//Proceedings of the 2nd International Workshop on Databases in Networked Informa tion Systems(DNIS'02). Aizu, Japan, 2002:188-200.
  • 4Leskovec J, Adamic L A, Huberman B A. The dynamics of viral marketing//Proceedings of the 7th ACM Conference on Electronic Commerc. Ann Arbor, USA, 2006:228-237.
  • 5Lappas Theodoros, Liu Nun, Terzi Evimaria. Finding a team of experts in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:467-476.
  • 6Zhou Yang, Cheng Hong, Yu Jeffrey Xu. Graph clustering based on structural/attribute similarities. Proceedings of the VLDB Endowment, 2009, 2(1): 718-729.
  • 7Zhu Linhong, Ng Wee Keong, Cheng James. Structure and attribute index for approximate graph matching in large graphs. Information Systems, 2011, 36(6) : 958-972.
  • 8Cheng James, Ke Y, Fu Ada Wai-Chee. Finding maximal cliques in massive networks by H graph//Proceedings of the 2010 ACM SIGMOD International Conference on Man- agement of Data(SIGMOD' 11). Indianapolis, USA, 2010: 447-458.
  • 9Cheng James, Ke James, Chu Shumo, Ozsu M Tamer. Effi- cient core decomposition in massive networks//Proceedings of the 2011 IEEE 27th International Conference on Data En- gineering(ICDE'll). Washington, DC, USA, 2011:51-62.
  • 10Huang Jianbin, Sun Heli, Han Jiawei, Deng Hongbo, Sun Yizhou, Liu Yaguang. Shrink: A structural clustering algo- rithm for detecting hierarchical communities in networks// Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM'10). Toronto, Canada, 2010:219-228.

共引文献7

同被引文献3

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部