期刊文献+

柔性金属有机骨架材料(MOFs)用于气体吸附分离 被引量:19

Selective gas adsorption and separation in flexible metal-organic frameworks
下载PDF
导出
摘要 柔性金属有机骨架材料(MOFs)具有高度有序的网络结构与可变形的骨架,其骨架结构会对外界的温度、压力及客体分子的刺激产生独特的结构响应。近几年来,柔性MOFs在气体吸附、气体分离、传感等领域显示出巨大的应用潜力。截至目前,研究者们对柔性MOFs的研究仅局限于对其结构形变的机理解释,而缺乏对柔性MOFs应用于相关化工过程的性能研究。本文着重对近年来柔性MOFs在气体吸附分离领域的研究进展进行了综述,并详细地分析了柔性MOFs结构与其气体吸附分离性能之间的构效关系。通过分子模拟结合实验,讨论了柔性MOFs结构对气体分子的平衡吸附与动力学扩散的影响。分析表明,设计合成具有良好吸附选择性与扩散性能的柔性MOFs是其应用于绿色、高效气体分离过程的重要发展方向。 Flexible metal-organic frameworks(MOFs)have both highly ordered coordination network and cooperative structural transformability. Their strutures can respond to temperature,pressure,guest adsorption/desorption,and other external stimuli. In recent years,flexible MOFs has showed great potential in gas adsorption,gas separation and sensing. However,most reports on flexible MOFs are limited to the mechanism study on structural transformation,while their applications on chemical industry has been insufficiently investigated. In this review,emphasis is given on the recent progress in the gas adsorption and separation on flexible MOFs. And the relationships between adsorption/separation properties and framework features are detailed analyzed. In addition to the experimental aspect,theoretical investigations of adsorption equilibrium and diffusion dynamics via molecular simulations are also briefly reviewed. Therefore,more efforts should be made to design and synthesis new flexible MOFs with highly adsorption selectivity and diffusion properties for green and efficient gas separation process.
出处 《化工进展》 EI CAS CSCD 北大核心 2016年第6期1794-1803,共10页 Chemical Industry and Engineering Progress
基金 国家自然科学基金重点项目(21136007) 国家重点基础研究发展计划项目(2014CB260402) 2014年度山西省煤基重点科技攻关项目(MQ2014-10)
关键词 柔性金属有机骨架 吸附 分离 天然气 碳氢化合物 flexible metal-organic frameworks adsorption separation natural gas hydrocarbons
  • 相关文献

参考文献68

  • 1LI J R, SCULLEY J, ZHOU H C, et al. Metal-organic frameworks for separations[J]. Chem. Rev., 2012, 112 (2): 869-932.
  • 2FURUKAWA H, CORDOVA K E, KEEFFE M O', et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341 (6149): 974.
  • 3SLATER A G, COOPER A 1. Function led design of new porous materials[J].Science, 2015, 348 (6238): 988.
  • 4LI M, LI D, KEEFFE M O' , et al. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle[J]. Chem. Rev., 2014, 114 (2): 1343-1370.
  • 5KITAGAWA S, KITAURA R, NORO S 1. Functional porous coordination polymers[J]. Angew. Chem. Int. Ed., 2004, 43: 2334-2375.
  • 6HORIKE S, SHIMOMURA S, KITAGAWA S. Soft porous crystals[J]. Nat. Chem., 2009, 1: 695-704.
  • 7SAKATA Y, FURUKAWA S, K1TAGAWA S. Shape-memory nanopores induced in coordination frameworks by crystal downsizing[J]. Science, 2013, 339 (6116): 193-196.
  • 8SCHNEEMANN A, BON V, SCHWEDLER I, et al. Flexible metal-organic frameworks[J]. Chem. Soc. Rev., 2015, 43 (16): 6062-6096.
  • 9KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chem. Rev., 2012, 112: 1105-1125.
  • 10El k B, WANG Y, YANG J F, et al. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks[J].J. Mater. Chem. A, 2015, 3: 22574-22583.

同被引文献184

引证文献19

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部