期刊文献+

一类具有随机扰动的谣言传播模型的动力学行为分析 被引量:1

Analysis on The Dynamics Behavior of A Rumor Transmission Model With Stochastic Perturbation
下载PDF
导出
摘要 为探究环境噪声对谣言传播的影响,建立了一类具有随机扰动的谣言传播模型.首先,利用Ito公式验证了模型正解的全局存在唯一性;其次,通过构造Lyapunov函数证明了当R0 〈1时,传谣者和免疫者将依指数趋于灭绝;当R0 〉1且σ^2 〈2(β -γ -b) 时,系统是随机强平均持久的;再次,证明了当噪声强度较小时随机模型的解将围绕相应确定性模型的正平衡点振荡,且振幅与噪声强度有关;最后,通过数值模拟验证了所得理论结果的正确性. Considering the influence of the noise in the environment, we construct a stochastic rumortransmission model. By using the Ito formula, we first obtain the global existence and uniqueness of thepositive solution. Then we show the spreaders and stiflers will tend to zero exponentially almost surelyunder the condition R0 〈1 ; when R0 〉1 and σ2 〈2(β -γ -b) , the stochastic system is strong persistentin mean. Furthermore, we show that the solution of the stochastic model spirals around the correspondingequilibrium of the deterministic model when the noise intensity is small, and the intensity of fluctuationis proportional to that of the white noise. Finally, these results are illustrated by computer simulations.
作者 陈华
机构地区 西安科技大学
出处 《科技通报》 北大核心 2016年第6期139-144,199,共7页 Bulletin of Science and Technology
关键词 谣言传播 ITO公式 动力学行为 灭绝 持久性 rumor spreading Ito formula dynamics behavior extinction persistence
  • 相关文献

参考文献8

  • 1张芳,司光亚,罗批.谣言传播模型研究综述[J].复杂系统与复杂性科学,2009,6(4):1-11. 被引量:67
  • 2Kawachi K,Seki M,Yoshida H,et al. A rumor transmis-sion model with various contact interactions[J]. Journal ofTheoretical Biology,2008,253(1): 55-60.
  • 3霍良安,黄培清.科普教育及媒体报道对于不实信息传播的影响[J].系统工程理论与实践,2014,34(2):365-375. 被引量:14
  • 4赵洪涌,朱霖河.社交网络中谣言传播动力学研究[J].南京航空航天大学学报,2015,47(3):332-342. 被引量:20
  • 5Laarabi H,Abta A,Rachik M,et al. Stability analysis of adelayed rumor propagation model[J].Differential Equations& Dynamical Systems,2015: 1-9.
  • 6Zhao L,Xie W,Gao H Oliver,et al. A rumor spreadingmodel with variable forgetting rate [J]. Physica A,2013,392: 6146-6154.
  • 7Daley D J,Kendall D G. Stochastic rumours[J]. Ima Jour-nal of Applied Mathematics,1965,1(1):42-55.
  • 8Higham D J. An algorithmic introduction to numerical sim-ulation of stochastic differential equations[J].Siam Review,2001,43(3):525-546.

二级参考文献121

共引文献88

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部