期刊文献+

基于AGA的智能桁架结构模糊振动控制

Fuzzy control for intelligent truss structure based on AGA
下载PDF
导出
摘要 应用一种根据适应度自动调整选择交叉概率和变异概率的自适应遗传算法(Adaptive Genetic Algorithm,简称AGA),来优化智能桁架结构模糊控制系统。首先,考虑到压电主动杆的机电耦合特性,建立系统的有限元动力方程;其次,以智能桁架结构的主动杆轴向位移差为优化目标,使用自适应遗传算法优化模糊控制规则,以增强智能桁架结构模糊控制器的振动控制效果;利用Matlab/Simulink建立空间智能桁架结构的仿真模型,对模糊规则优化前后的控制结果进行对比。仿真结果表明:使用自适应遗传算法优化后的模糊控制器,能够加快智能桁架振动衰减速度,并且有效消除模糊控制的稳态误差。 In this paper,an adaptive genetic algorithm(AGA)which can adaptively select crossover probability and mutation probability is presented to optimize the fuzzy control system for the space intelligent truss structure. Firstly,considering the electromechanical coupling characteristic of piezoelectric active bars,the finite element dynamic equations of the system are established. Secondly,the optimization goal is the minimum of axial displacement difference of intelligent truss active bars. An adaptive genetic algorithm is applied to optimize fuzzy control rules to improve the control effect of fuzzy controller of intelligent truss structure. To demonstrate the effectiveness of this method,the model of space intelligent truss structure is established by the Matlab / Simulink simulation,and the control results of fuzzy rules before and after optimization are compared. Simulation results show that after the optimization with adaptive genetic algorithm,the intelligent truss vibration damping rate has also been accelerated,and the steady- state error of fuzzy control are effectively eliminated.
出处 《河北工程大学学报(自然科学版)》 CAS 2016年第2期5-9,共5页 Journal of Hebei University of Engineering:Natural Science Edition
基金 国家自然科学基金资助项目(11302066和11272112)
关键词 自适应遗传算法 智能桁架 模糊规则 主动振动控制 MATLAB adaptive genetic algorithm intelligent truss fuzzy rules active vibration control Matlab
  • 相关文献

参考文献13

  • 1GAO W,CHEN J J,MA H B,et al.Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters[J].Computers & Structures,2003,81(1):53-60.
  • 2CHEN Gunshing,BRUNO,ROBIN J,et al.Optimal placement of active/passive members in truss structures using simulated annealing[J].AIAA journal,1991,29(8):1327-1334.
  • 3GUO Tieneng,LIU Zhifeng,CAI Ligang.An Improved Force Feedback Control Algorithm for Active Tendons[J].Sensors,2012,12(8):11360-11371.
  • 4KHOSHNOOD A M,MORADI H M.Robust adaptive vibration control of a flexible structure[J].ISA transactions,2014,53(4):1253-1260.
  • 5ZADEH L A.Fuzzy sets[J].Information and control,1965,8(3):338-353.
  • 6乔晓艳,佘娜,孟鑫.基于遗传算法的电力系统负荷模型准确度研究[J].河北工程大学学报(自然科学版),2013,30(4):78-81. 被引量:2
  • 7PATRICK SIARRYA,FRAN OIS GUELYB.A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases[J].Fuzzy sets and systems,1998,99(1):37-47.
  • 8KIM HYUN SU,KANG JOO WON.Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm[J].Engineering Structures,2012(41):242-257.
  • 9LIN J,ZHENG Y B.Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning[J].Journal of Sound and Vibration,2012,331(16):3677-3694.
  • 10EMRE SUMER,MUSTAFA TURKER.An adaptive fuzzy-genetic algorithm approach for building detection using high-resolution satellite images[J].Computers, Environment and Urban Systems,2013(39):48-62.

二级参考文献10

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部