期刊文献+

碳源供给策略对水产养殖废水生物絮团处理效果的影响 被引量:8

Effect of Carbon Source Supply Tactics on Treatment of Aquaculture Wastewater with Biofloc Technology
下载PDF
导出
摘要 为探究碳源供给策略对工厂化循环水养殖系统废水生物絮团处理的影响,以水产养殖模拟废水为研究对象,以蔗糖、乙酸钠和甘油为碳源,分别设置不同C/N比梯度(5、10和15)进行了相关研究。结果表明,各实验组均存在硝化作用和同化作用,在较低C/N比(C/N比为5)时,不同碳源硝化作用强度存在显著差异(P<0.05),但在各系统稳定阶段,氨氮去除率均达到90%以上。其中,乙酸钠为碳源时,系统达到稳定所需时间较短(4 d),并不受C/N比的影响,而另外2组随着C/N比增加,系统达到稳定所需时间逐渐减少(均由24 d减少至12 d),且氨氮去除效率逐渐提高。其次,不同碳源和C/N比对生物絮团系统碱度的影响不同,在系统稳定阶段,乙酸钠随着C/N比增加,碱度逐渐升高,且均保持较高的浓度,不适宜水产重复利用,而蔗糖和甘油相对稳定,且均低于200 mg/L。另外,结合生物絮团沉积指数可知,生物絮团的沉降性能对絮团氨氮去除效率没有显著影响(P>0.05)。在低C/N比时,不同碳源其EPS多糖含量差异不显著(P>0.05),而随着C/N比增加,不同碳源EPS多糖含量的多少及变化趋势不同。 For the trend and necessary to limit water exchange and control disease,biofloc technology( BFT) has been widely applied in aquaculture. The carbon source supplement is the base and core of BFT,which will significantly affect the water quality,food conversion ratio( FCR) and the immune capacity in rearing animals. To explore the influence of carbon source supply tactics on the treatment of waste water discharged by recirculating aquaculture system( RAS),research was conducted,based on simulated aquaculture wastewater as the research object. In addition,the sucrose,sodium acetate and glycerol were used as carbon source,and three kinds of C/N ratio( 5,10 and 15) were evaluated for each type of carbon source respectively. Results showed that nitrification and assimilation occurred in the experimental groups. At the low C/N ratio( C/N ratio is 5),the nitrification intensity of different carbon source had extremely difference( P〈0. 05),but in the stable stage of each system,ammonia nitrogen removal rates all achieved over 90%. Moreover,sodium acetate system was quicker to reach the stablestage( 4 d),and less affected by C/N ratio. While with the C/N ratio increasing,the groups of sucrose and glycerol required less time to achieve stabilization( 24 d reduce to 12 d),and the ammonia nitrogen removal efficiencies were improved gradually( sucrose,increasing from 87% to 99%; glycerol,from83% to 98%). Secondly,different carbon source and C/N ratio had various effects on alkalinity of biofloc system. At system stable stage,with the increase of C/N ratio,the alkalinity of sodium acetate groups was raised slowly,and maintained high concentrations,which were not suitable for aquaculture reuse,but the groups of sucrose and glycerol were relatively stable,which were all less than 200 mg/L( Ca CO3). In addition,combined with biofloc sludge volume index( SVI),settlement performance of biofloc had no significant influence on the removal efficiency of ammonia nitrogen( P〈0. 05). At a low C/N ratio( C/N ratio is 5),the difference of EPS polysaccharide contents of three carbon source was not significant( P〈0. 05),and with the increase of C/N ratio,EPS polysaccharide of three carbon source had different contents and change tendencies.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2016年第6期317-323,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金青年基金项目(31402348) '十二五'国家科技支撑计划项目(2014BAD08B09) 农业部渔业机械仪器研究所重点实验室开发基金项目(2015) 中国博士后科学基金项目(2014M551747)
关键词 工厂化循环水养殖系统 生物絮团 碳源 碳氮比 水质 细胞胞外多聚物 factory recirculating aquaculture biofloc technology carbon source C/N ratio water quality EPS
  • 相关文献

参考文献23

  • 1AVNIMELECH Y,VERDEGEM M C J, KURUP P. Sustainable landbased aquaculture:rational utilization of water, land and feed resource[ J ]. Mediterrancan Aquaculture Journal, 2008, 1 ( 1 ) :45 -55.
  • 2TACON A G J, FOSTER I P. Aquafeeds and the environment: policy implications[J]. Aquaculture, 2003, 226( 1 -4) : 181 - 189.
  • 3NAYLOR R L, REBECCA J G, JURGENNE H P, et at. Effect of aquaculture on world fish supplies [ J]. Nature, 2000, 405(6790) : 1017 - 1024.
  • 4PIEDRAHITA R H, Reducing the potential environmental impact of tank aquaculture efluents through intensification and recirculation [ J ]. Aquaculture, 2003, 226 ( 1 - 4) : 35 - 44.
  • 5EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture in aquaculture production systems[ J]. Aquaculture, 2006, 257 (1 -4) : 346 - 358.
  • 6EMERENCIANO M, GAXIOLA G, CUZON G. Biofloc technology (BFT) : a review for aquaculture application and animal food industry[ M ] //MATOVIC M D. Biomass Now-Cultivation and Utilization,2013 : 301 - 328.
  • 7卢炳国,王海英,谢骏,王广军,余德光,李志斐,郁二蒙,龚望宝.不同C/N水平对草鱼池生物絮团的形成及其水质的影响[J].水产学报,2013,37(8):1220-1228. 被引量:39
  • 8LUO G Z, GAO Q, WANG C, et al. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system [ J ]. Aquaculture, 2014, 422 - 423 : 1 - 7.
  • 9LONG L, YANG J, LI Y, et al. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus)[J]. Aquaculture, 2015, 448:135 -141.
  • 10EKASARI J, RIVANDI D R, FIRDAUSI A P, et al. Biofloc technology positively affects Nile tilapia ( Oreochromis niloticus) larvae performance[ J]. Aquaculture, 2015, 441 : 72 - 77.

二级参考文献42

  • 1王文平,郭祀远,李琳,王明力,梁桂娟.苯酚-硫酸法测定野木瓜中多糖含量的研究[J].食品科学,2007,28(4):276-279. 被引量:126
  • 2de Kreuk M K, Pronk M, van Loosdrecht M C M. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures [ J ]. Water Res,2005,39 ( 18 ) :4476 - 4484.
  • 3Crab R, Avnimelech Y, Defoirdt T, et al. Nitrogen removal techniques in aquaculture for a sustainable production [ J]. Aquaculture, 2007, 270 1 - 4) : 1 -14.
  • 4Piedrahita R H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation [ J ]. Aquaculture, 2003,226(1 -4) :35 -44.
  • 5De Schryver P,Verstraete W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors[J]. Bioresource Technology, 2009, 100 ( 3 ) : 1162 - 1167.
  • 6Avnimelech Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999,176(3 -4) :227 -235.
  • 7Hargreaves J A. Photosynthetic suspended-growth systems in aquaculture [ J ]. Aquacultural Engineering, 2006,34 ( 3 ) : 344 - 363.
  • 8Crab R, Defoirdt T, Bossier P, et al. Biofloc technology in aquaculture: Beneficial effects and future challenges[J].Aquaculture, 2012,356 - 357 : 351 -356.
  • 9Crab R,Lambert A,Defoirdt T, et al. The application of bioflocs technology to protect brine shrimp( Artemia franciscana ) from pathogenic Vibrio harveyi[ J ]. Journal of Applied Microbiology, 2010, 109(5) :1643 - 1649.
  • 10De Schryver P, Sinha A K, Kunwar P S, et al. Poly- B-hydroxybutyrate ( PHB ) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass,Dicentrarchus labrax[J]. Appl Microbiol Biotechnol,2010,86(5) : 1535 - 1541.

共引文献56

同被引文献80

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部