期刊文献+

面向可靠性和能耗优化的可压缩数据收集方案 被引量:1

Compressible data gathering scheme for reliability and energy consumption optimization
下载PDF
导出
摘要 现有的无线传感器网络(WSNs)数据收集方法无法在耗费较低开销的同时保证数据收集的可靠性。基于压缩感知(CS)理论,设计了基于指数核函数的稀疏矩阵和基于准循环低密度奇偶校验(LDPC)码的测量矩阵来用于节点的数据采集,以最大化网络生命周期为目标,将测量值传输问题建模为汉密尔顿回路问题,并提出了一种基于树分解的数据收集路径优化算法。仿真实验结果表明:所提方案在数据重构误差和能耗方面的性能要优于目前典型的数据收集方法。 The existing wireless sensor networks (WSNs) data gathering methods cannot be ensure reliability of data gathering with low cost. To solve this problem, Based on the theory of compressive sensing(CS) , sparse matrix based on exponential kernel function and measurement matrix based on quasicyclic low density parity check (LDPC) code are designed to be used for data acquisition of node. Maximization of network lifetime is target, the measurement value transmission problem is modeled as the Hamilton loop problem, and a data gathering path optimization algorithm based on tree decomposition is proposed. Simulation results show that the performance of the proposed scheme is better than the typical data gathering methods in terms of data reconstruction error and energy consumption.
作者 李鹏 王建新
出处 《传感器与微系统》 CSCD 2016年第6期24-26,30,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61472449 61173169 61402542)
关键词 无线传感器网络 数据收集 压缩感知 稀疏矩阵 测量矩阵 树分解 wireless sensor networks ( WSNs ) data gathering compressive sensing (CS) sparse matrix measurement matrix tree decomposition
  • 相关文献

参考文献11

  • 1陈岩,谭婷,高峰,王克栋,郭宏.水质监测无线传感器网络节点双电源设计[J].传感器与微系统,2015,34(10):93-95. 被引量:5
  • 2Charbiwala Z,Kim Y,He Ting,et al.Compressive oversampling for robust data transmission in sensor networks[C]∥The 29th IEEE Conference on Computer Communications,Joint Conference of the IEEE Computer and Communications Societies(INFOCOM),San Diego,CA,USA:IEEE,2010:1-9.
  • 3Wu Xuanguo,Yang Panlong,Jung Taeho,et al.Compressive sensing meets unreliable link:Sparsest random scheduling for compressive data gathering in lossy WSNs[C]∥The 20th Annual International Conference on Mobile Computing and Networking(MOBICOM),Maui,HI,USA:ACM,2014:13-22.
  • 4Luo Chong,Wu Feng,Sun Jun,et al.Efficient measurement generation and pervasive sparsity for compressive data gathering[J].IEEE Transactions on Wireless Communications,2010,9(12):3728-3738.
  • 5蒋畅江,石为人,唐贤伦,王平,向敏.能量均衡的无线传感器网络非均匀分簇路由协议[J].软件学报,2012,23(5):1222-1232. 被引量:222
  • 6Zheng Haifeng,Yang Feng,Tian Xiaohua,et al.Data gathering with compressive sensing in wireless sensor networks:A random walk-based approach[J].IEEE Transactions on Parallel and Distributed Systems,2015,26(1):35-44.
  • 7王冲,张霞,李鸥.无线传感器网络中基于压缩感知的分簇数据收集算法[J].传感器与微系统,2016,35(1):142-145. 被引量:5
  • 8刘冬培,刘衡竹,张波涛.基于准循环双对角阵的LDPC码编码算法[J].国防科技大学学报,2014,36(2):156-160. 被引量:9
  • 9Fafianie S,Bodlaender H L,Nederlof J.Speeding up dynamic programming with representative sets:An experimental evaluation of algorithms for steiner tree on tree decompositions[J].Algorithmica,2015,71(3):636-660.
  • 10Azad A,Buluc A,Pothen A.A parallel tree grafting algorithm for maximum cardinality matching in bipartite graphs[C]∥The 30th IEEE International Parallel&Distributed Processing Symposium(IPDPS),Chicago,USA:IEEE,2015:1231-1241.

二级参考文献35

  • 1彭爱平,郭晓松,蔡伟,谭立龙.无线传感器网络能量管理研究[J].传感器与微系统,2007,26(8):1-5. 被引量:11
  • 2Chung S Y, Forney G D Jr. Richardson T J, et al. On the design of low-density parity-check codes within 0. 0045dB of the Shanon limit[ J]. IEEE Communications Letters, 2001, 5 (2) : 58 -60.
  • 3European Broadcasting Union, Digital Video Broadcasting (DVB). ETSI EN 302 307 V1.1.2 second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications[ S]. 2006.
  • 4IEEE 802.16e. Draft IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems[ S]. 2005, 12.
  • 5IEEE 802. 11n. Draft IEEE standard for local metropolitan networks-specific requirements, part 11: wireless LAN Medium Access Control ( MAC ), and Physical Layer ( PHY ) specifications: Enhancements for higher throughput [ S ]. 2006, 3.
  • 6Richardson T J, Urbanke R L. Efficient encoding of low-density parity-check codes [ J ]. IEEE Transactions on Information Theory, 2001, 47(2): 638-656.
  • 7Li Z W, Chen L, Zeng L Q, et al. Efficient encoding of quasi- cyclic low-density parity-check codes [ J ]. IEEE Transactions on Communications, 2006, 54( 1 ): 71 -81.
  • 8Yoon C, Choi E, Cheong M, et al. Arbitrary bit generation and correction technique for encoding QC-LDPC codes with dual - diagonal parity structure [ C ]//IEEE Wireless Communications and Networking Conference, 2007 : 662 - 666.
  • 9Kim J K, Yoo H , Lee M H. Efficient encoding architecture for IEEE 802. 16e LDPC codes [ J ]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, 2008, E91. A(10) : 3607 -3611.
  • 10Cai Z, Hao J, Tan P H, et al. Efficient encoding of IEEE 802. 11n LDPC codes [ J ]. Electronics Letters, 2006, 42 (25) : 1471 -1472.

共引文献235

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部