期刊文献+

基于卷积神经网络的SAR图像目标识别研究. 被引量:72

SAR ATR Based on Convolutional Neural Network
下载PDF
导出
摘要 针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的类别区分能力;然后利用改进后的卷积神经网络对SAR图像进行特征提取;最后利用支持向量机(Support Vector Machine,SVM)对特征进行分类。使用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)SAR图像数据进行实验,识别结果证明了所提方法的有效性。 This study presents a new method of Synthetic Aperture Radar (SAR) image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.
出处 《雷达学报(中英文)》 CSCD 2016年第3期320-325,共6页 Journal of Radars
基金 国家自然科学基金(61471370)~~
关键词 合成孔径雷达 自动目标识别 卷积神经网络 支持向量机 BP算法 Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) Convolutional Neural Network (CNN) Support Vector Machine (SVM) Back Propagation (BP)
  • 相关文献

参考文献4

二级参考文献111

  • 1胡利平,刘宏伟,吴顺君.一种新的SAR图像目标识别预处理方法[J].西安电子科技大学学报,2007,34(5):733-737. 被引量:20
  • 2KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 3DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 4ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 5BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 6ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 7SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 8RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 9LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 10SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.

共引文献433

同被引文献439

引证文献72

二级引证文献617

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部