期刊文献+

基于平衡准确率和规模的决策树剪枝算法 被引量:4

Pruning Algorithm of Decision Tree by Balance of Accuracy and Size
下载PDF
导出
摘要 决策树剪枝是决策树分类学习中的重要步骤,可降低决策树复杂程度和提高决策树泛化能力,从而提高决策树识别精度和效率。通过利用系数函数综合决策树的错误率和规模,形成决策树剪枝标准,在系数函数的参数合适选取,采用自底向上遍历过程逐一进行判断剪枝。实验结果表明,综合考虑决策树的分类预测准确率和决策树的规模大小,BASP剪枝算法能够获得更好的剪枝效果。 Pruning is an important step of decision tree learning,which can reduce the complexity of decision tree and improve its generalization ability to gain the accuracy effectively and efficiently. Definition of function,which combines the error rate and size of decision tree,serves as a criterion for decision tree pruning. After proper selection of coefficient of the function,the procedure of bottom-up traverse is adopted for the decision tree to prune by the criterion,resulting in good accuracy and performance.
出处 《科学技术与工程》 北大核心 2016年第16期79-82,共4页 Science Technology and Engineering
基金 国家高新技术研究发展计划(2009AA062802) 国家自然科学基金(60473125) 中国石油(CNPC)石油科技中青年创新基金(05E7013) 国家重大专项子课题(G5800-08-ZS-WX)资助
关键词 决策树 剪枝算法 准确率 规模 decision tree pruning algorithm accuracy size
  • 相关文献

参考文献9

二级参考文献51

  • 1任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 2魏孝章,豆增发.一种基于信息增益的K-NN改进算法[J].计算机工程与应用,2007,43(19):188-191. 被引量:9
  • 3邵峰晶,于忠清.数据挖掘原理[M].北京:中国水利出版社,2003.
  • 4HongJia Rong. AEI: an extension approximate method for genrale overing problem[ J]. International Journal of Computer and Information Science, 1985,14 (6) :421 - 437.
  • 5毛国君,等.数据挖掘原理与算法[M].北京:清华大学出版社,2006.
  • 6J R Quinlan. Simplifying decision trees[ J ]. International Journal of Man - Machine Studies, 1987,27(3) :221 -234.
  • 7B Cestnik, I Bratko. On estimating probabilities in tree pruning [ C ]. Proc of European Working Sessions on Learning, Porto: Springer - Verlag, 1991. 138 - 150.
  • 8D Foumier, B Cremilleux. A quality index for decision tree pruning[ J ]. Knowledge - based Systems, 2002,15 ( 1 ) :37 - 43.
  • 9Kurgan L A, Cios K J. CAIM Discretization Algorithm[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(2) :145-153.
  • 10Liu H, Setiono R. Feature Selection via Discretization[J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 9(4) :642-645.

共引文献85

同被引文献31

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部