期刊文献+

基于自适应全变差的乘性噪声去噪算法 被引量:3

Multiplicative denoising algorithm based on adaptive total variation
下载PDF
导出
摘要 针对现有去除乘性噪声的变分模型存在细节丢失和计算速度慢的问题,文中引入权重函数,在此基础上给出一种基于偏微分方程(PDE)的去除图像乘性噪声的变分模型。为了提高运算速度,在该模型中引入不精确的交替方向乘子算法(IADMM)。在算法中,引入辅助变量将原问题变为3个相关的子问题,然后分别对3个子问题求解。实验结果表明,模型有较好的去噪效果,能够较好地抑制图像中的"阶梯效应"。与梯度下降法相比,该算法处理过程快,极大地缩短了运算时间,并且保持了较好的去噪效果。 A weight function is introduced and a new variational model based on partial differential equa- tion (PDE) is proposed to solve the problem about the loss of detail and the slow calculation speed of the existing variational approaches to remove multiplieative noise. An inexact alternating direction method of muhiplier (IADMM) is introduced to improve processing speed in the model. Due to the introduction of the auxiliary variable, the primal problem is divided into three relevant subproblems in the algorithm, and then these subproblems are respectively solved. Experimental results show that the model has a good de- noising effect and restrains the "staircase effect". Compared with the gradient descent method, the algo- rithm is faster and can keep denoising effect better.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2016年第3期74-78,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(11301281)资助项目
关键词 图像去噪 伽马噪声 偏微分方程 不精确的ADMM(IADMM)算法 image denoising Gamma noise partial differential equation (PDE) inexact alternating di-rection method of multiplier(IADMM) algorithm
  • 相关文献

参考文献14

  • 1RUDIN L, LIONS P, OSHER S. Multiplicative Denoising and Deblurring: Theory and Algorithms [ M ]. New York: Springer,2003 : 103 - 119.
  • 2AUBERT G, AUJOL J F. A variational approach to remo- ving muhiplicative noise [ J ]. SIAM Journalon Applied Mathematics, 2008,68 (4) : 925 - 946.
  • 3JIN Z M, YANG X P. Analysis of a new variational model for muhiplicative noise removal[ J 1- Journal of Mathemati- cal Analysis and Applications ,2010,362 (2) :415 - 426.
  • 4HUANG Y,NG M,WEN Y W. A new total variation meth- od for multiplicative noise removal [ J ]. SIAM Journal on Imaging Science ,2009,2 ( 1 ) :20 - 40.
  • 5DONOHO D L, JOHNSTONEM. Adapting to unknown smoothness via wavelet shrinkage [ J 1. Amer Statist Assoc, 1995 (90) : 1200 - 1224.
  • 6GEMAN D, GEMAN S. Stochastic relaxation, Gibbs distri- butions, and the Bayesian restoration of images [ J ]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010,20(6) :25 -62.
  • 7RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60 (1/4) ,259 - 268.
  • 8STRONG D M, CHANT F. Spatially and scale adaptive to- tal variation based regularization and anisotropic diffusion in image processing [ C ~//Diusion in Image Processing, UCLA Math Department CAM Peport. 1996.
  • 9GANG D, GUO Z C, WU B Y. A convex adaptive total vari- ation model based on the gray level indicator for multiplie- ative noise removal [ J 1- Abstract & Applied Analysis ,2013 (3) :551 -552.
  • 10GABAY D, MERCIER B. A dual algorithm for the solution of nonlinear variational problems via finite-element ap- proximations [ J ]. Computers and Mathematics with Appli- cations, 1976,2 ( 1 ) : 17 - 40.

同被引文献26

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部