期刊文献+

基于SF_6分解产物融合判断的GIS绝缘劣化趋势划分 被引量:12

GIS Insulation Deterioration Trend Division Based on SF_6 Decomposition Products Fusion Judgment
原文传递
导出
摘要 为实现用SF_6气体分解产物来诊断和评估气体绝缘金属封闭开关设备(GIS)绝缘状态,必须寻找出恰当的特征参量,建立气体分解组分与GIS绝缘劣化的判断法则。为此构建了SF_6气体放电分解平台,做针-板缺陷下长期持续性放电分解实验以模拟GIS绝缘劣化全过程。选取SO_2F_2、SOF_2、SO_2、CF4、CO_2为特征组分,获得其在不同阶段的体积分数变化趋势。其中SO_2、SOF_2和SO_2F_2呈类"Logistic"曲线走势,表现出较好的一致性。提出用φ(SO_2F_2+SOF_2+SO_2)/φ(CO_2+CF_4)体积分数比、SO_2体积分数φ(SO_2)和(SO_2F_2+SOF_2+SO_2)体积分数变化率作为特征参量并分析其理化意义,在不同阶段特征参量变化显著,据此采用模糊分析法识别放电严重程度,建立了相应的模糊判断模型,将GIS绝缘劣化趋势划分为"正常阶段"、"劣化阶段"和"饱和阶段",分类结果与实验效果相符合。 To diagnose and evaluate the gas-insulated metal-enclosed switchgear(GIS) operating state by analyzing the SF_6 decomposition products, it is necessary to find out the appropriate characteristic parameters and establish an association rule between the decomposed gas composition and GIS insulation deterioration. Consequently, we experimentally studied the long-term sustainable discharge decomposition by needle-plate defect model in order to simulate the whole process of GIS insulation deterioration. SO_2F_2, SOF_2, SO_2, CO_2,and CF_4 were selected as feature components, their concentration trend curves at different stages were captured. SO_2, SOF_2, and SO_2F_2 showed a trend of "Logistic" curve, which displayed a satisfied consistence. Concentration of SO_2, rate of(SO_2F_2+SOF_2+SO_2) and the ratio of φ(SO_2F_2+SOF_2+SO_2)/φ(CO_2+CF_4) were proposed as characteristic parameters and their physical significance were also explained. Three characteristic parameters change significantly at different stages.Moreover, fuzzy analysis was used to identify the severity of discharge, then corresponding fuzzy judgment model was established, and GIS insulation deterioration trend was divided into three states of "normal stage", "deterioration stage", and "saturation stage". The classification results are consistent with the experimental ones.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第6期1834-1840,共7页 High Voltage Engineering
基金 国家自然科学基金(50677047) 中国南方电网科技项目(K-GX2011-019) 湖北省科学条件专项(2013BEC010) 湖北省科技支撑计划项目(2015BCE074)~~
关键词 SF6分解产物 GIS 绝缘劣化 特征组分 模糊分析 趋势划分 故障诊断 SF6 decomposition products gas-insulated metal-enclosed switchgear insulation deterioration feature components fuzzy analysis trend division fault diagnosis
  • 相关文献

参考文献23

  • 1唐炬,胡瑶,姚强,何建军,张晓星.不同气压下SF_6的局部放电分解特性[J].高电压技术,2014,40(8):2257-2263. 被引量:34
  • 2赵宇,王先培,胡红红,代荡荡,龙嘉川,田猛,朱国威,黄云光.基于紫外光谱检测的GIS内多类故障早期预警[J].光谱学与光谱分析,2015,35(2):438-442. 被引量:10
  • 3齐波,李成榕,耿弼博,郝震,于乐,高继新.GIS设备绝缘子高压电极故障局部放电严重程度的诊断与评估[J].高电压技术,2011,37(7):1719-1727. 被引量:75
  • 4Tang J, Zeng F, Pan J, et al. Correlation analysis between formation process of SF6 decomposed components and partial discharge quali- fies[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 864-875.
  • 5Tang J, Liu F, Zhang X, et al. Partial discharge recognition based on SF6 decomposition products and support vector machine[J], lET Science, Measurement & Technology, 2012, 6(4): 198-204.
  • 6张晓星,姚尧,唐炬,孙才新,万凌云.SF_6放电分解气体组分分析的现状和发展[J].高电压技术,2008,34(4):664-669. 被引量:247
  • 7Tang J, Liu F, Zhang X, et al. Partial discharge recognition through an analysis of SF6 decomposition products part l: decomposition charac- teristics of SF6 under four different partial discharges[j]. IEEE Transactions on Dielectrics & Electrical Insulation, 2012, 19(1): 29-36.
  • 8Tang J, Liu F, Meng Q, et cal. Partial discharge recognition through an analysis of SF6 decomposition products part 2: feature extraction and decision tree-based pattern recognition[J]. IEEE Transactions on Di- electrics & Electrical Insulation, 2012, 19( 1 ): 37-44.
  • 9唐炬,任晓龙,谭志红,裘吟君,孙才新.针-板缺陷模型下局部放电量与SF_6分解组分的关联特性[J].高电压技术,2012,38(3):527-534. 被引量:24
  • 10Zhang X, Chen Q, Tang J, et al. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density func- tional theory study [J]. Scientific Reports, 2014, 4(4): 560-560.

二级参考文献177

共引文献618

同被引文献132

引证文献12

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部