期刊文献+

基于数据挖掘的信用卡风险评估系统设计

Design on Credit Card Risk Assessment System Based on Data Mining
下载PDF
导出
摘要 数据挖掘是从大量数据中通过算法搜索隐藏于其中的信息,解决"数据爆炸但知识贫乏"问题。本文基于SLIQ算法展开研究。首先,研究由表示层、处理层和挖掘层构成的数据挖掘系统结构;然后,研究SLIQ算法,以算法思想为基础,设计了SLIQ算法流程,构建了Gini系数计算最佳分裂点和DML剪枝算法数学模型;最后,研究由主要常规功能和决策分析功能以及支撑数据构成的系统功能结构。本文的研究成果是软件开发的基础性工作,为软件开发提供技术支持。 Data mining is the large amount of data through the algorithm to search the information, it is hidden in the data, to solve the "data explosion but lack of knowledge" problem. The paper is studied based on SLIQ algorithm. First, researches data mining system architecture, which is composed of the presentation layer, processing layer and excavated layer; and then, researches SLIQ algorithm, which is based on the algorithm thinking, and designs SLIQ algorithm flow, constructed Gini coefficient to calculate the optimal split point and DML pruning algorithm mathematical model; Finally, researches system function structure by the major conventional functions and decision analysis capabilities and supports data constituted. The research results of this paper are the fundamental work of software development, and provide technical support for software development.
作者 马健美
出处 《自动化技术与应用》 2016年第5期37-40,共4页 Techniques of Automation and Applications
基金 辽宁省社会科学规划基金项目(编号L13BGL013)
关键词 数据挖掘 信用卡 风险评估 系统设计 SLIQ算法 data mining credit card risk assessment system design SLIQ algorithm
  • 相关文献

参考文献10

  • 1EMIL J.KHATIB,RAQUEL BARCO,Ana GoME Z-ANDRADES,et.al.Data mining for fuzzy diagnosis systems in LTE networks[J].Expert Systems with Applica tions, 2015,42(21) : 7549-7559.
  • 2CHOWDHURY FARHAN AHMED,NICOLAS LACHICHE,CleMENT CHARNAY.et.al. Flexible propositionalization of continuous attributes in relational data mining[J]. Expert Systems with Application,2015,42 (21): 7698-7709.
  • 3VeRONIQUE VAN VLASSELAER,CRISTIdN BRAVO,OLIVIER CAELEN,et.al. APATE.A novel approach for automated credit card transaction fraud detection using network-based extensions[J].Decision Support Systems, 2015,75(7): 38-48.
  • 4MURAT COKGEZEN,TIMUR KURAN.Between consumer demand and Islamic law..The evolution of Islamic credit cards in Turkey[J]. Journal of Comparative Economics, 2015,31 (6): 68-75.
  • 5张华成.基于SLIQ决策树算法的研究[J].现代计算机,2009,15(10):54-56. 被引量:3
  • 6A.KHOSRAVI TANAK,G.R.MOHTASHAMI BORZADARAN, J. AHMADI.Entropy maximization under the constraints on the generalized Gini index and its application in modeling income distributions[J].Physica A. Statistical Mechanics and its Applications,2015, 15(11):657-666.
  • 7AMANDA E.DAWSEY.State bankruptcy laws and the responsiveness of credit card demand[J]. Journal of Economics and Business, 2015,81(9) : 54-76.
  • 8朱王晓嘉,余建坤.基于类标签变化的改进SLIQ算法研究[J].微型电脑应用,2015,31(10):27-31. 被引量:2
  • 9JAUME GARC A VILLAR,Josep Maria Raya. Use of a Gird index to examine housing price heterogen eity.A quantile approach[J]. Journal of Housing Econo mics, 2015,29(9): 59-71.
  • 10岳曼娣,陈芝凯.基于评分模型的信用卡交易欺诈风险防范研究[J].中国信用卡,2014,0(6):53-56. 被引量:2

二级参考文献18

  • 1Manish Mehta, Rakesh Agrawal and Jorma Rissanen. SLIQ: a Fast and Scalable Classifier for Data Mining. IBM Almaden Research Center,1996.
  • 2Chandra, B., Varghese, P.P.On Improving Efficiency of SLIQ Decision Tree Algorithm. Neural Networks, 2007. IJC- NN 2007. International Joint Conference on 12-17 Aug. 2007 Page(s): 66-71.
  • 3Hongwen Yan,Rui Ma,Xiaojiao Tong. SLIQ in Data Mining and Application in the Generation Unit's Bidding Decision System of Electricity Market Power Engineering Conference, 2005. IPEC 2005. The 7th International Nov. 29 2005-Dec. 2 2005 Page(s):1-137.
  • 4Chandra, B., Varghese, P.P.. Fuzzy SLIQ Decision Tree Algorithm Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on Volume 38, Issue 5, Oct. 2008 Page (s):1294-1301.
  • 5范明,孟小峰,译.数据挖掘:概念与技术(3版)[M].北京:机械工业出版社,2012:4-10.
  • 6QUINLAN J R. Induction of decision trees [J]. Machine Learning, 1986, 1(1): 81-106.
  • 7QUINLAN J R. C4.5: programs for machine learning [M] Burlington: Morgan Kaufmann Publishers, 1993: 17-42.
  • 8MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: A fast scalable classifier for data mining [C]//EDBT' 96: The 5th International Conference on Extending Database Technology. Avignon: Springer, 1996:67-78.
  • 9SHAFER J, AGRAWAL R, MEHTA M. SPRINT: A scalable parallel classier for data mining [C]// VLDB' 96:1996 International Conference on Very Large Data Bases. Bombay: Citeseer, 1996:240-255.
  • 10RASTOGI R, SHIM K. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning [J]. Data Mining and Knowledge Discovery, 2000, 4(4): 315-344.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部