期刊文献+

平面图的距离2标号(英文)

Labeling Planar Graphs with a Condition on Distance Two
下载PDF
导出
摘要 本文证明若G为?(G)≥6且不含4,5,6,7圈的平面图,则λ_(p,q)(G)≤(2q-1)?(G)+8p-4.这一结果暗含着对于?(G)≥6且不含4,5,6,7圈的平面图G,Wegner猜想成立. In this paper, we show that if G is a planar graph with ?(G) ≥ 6 and without4, 5, 6, 7-cycles, then λ_(p,q)(G) ≤(2q- 1)?(G) + 8p- 4. This result implies that for every planar graph with ?(G) ≥ 6 and without 4, 5, 6, 7-cycles, Wegner's conjecture holds.
出处 《应用数学》 CSCD 北大核心 2016年第3期576-583,共8页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(61170302)
关键词 L(p q)-标号 可平面图 Wagner猜想 L(p q)-labeling Planar graph Cycle Wegner's conjecture
  • 相关文献

参考文献13

  • 1Bondy J A, Murty U S R. Graph Theory with Applications[M]. New York: North-Holland, 1976.
  • 2Wegner G. Graphs with Given Diameter and a Coloring Problem[M]. Dortmund: University of Dort- mund, 1977.
  • 3Thomassen C. Applications of Tutte cycles[R]. Copenha : Department of Mathematics, Technical University of Denmark, sept., 2001.
  • 4Van den Heuvel J, McGuinness S. Coloring of the square of a planar graph[J]. J. Graph Theory, 2003, 42: 110-124.
  • 5Borodin O V, Broersma H J, Glebov A, Van Den Heuvel J. Stars and bunches in planar graphs. Part II: General planar graphs and colorings[R]. Enschede: Department of Apllied Mathematics, University of Twente, 2002.
  • 6Molloy M, Salavatipour M R. A bound on the chromatic number of the square of a planar graph[J]. J. Combinatorial Theory. B., 2005, 94: 189-213.
  • 7Griggs J R, Yeh R K. Labeling graphs with a condition at distance 2[J]. SIAM J. Discrete Mathe- matics, 1992, 5: 586-595.
  • 8Kral D, Skrekovski R. A theorem about channel assignment problem[J]. SIAM J. Discrete Mathe- matics, 2003, 16(3): 426-437.
  • 9Goncalves D. On the L(p, 1)-labelling of graphs[J]. Discrete Mathematics, 2008, 308(8): 1405-1414.
  • 10WANG W F, Lih K W. Labeling planar graphs with conditions on girth and distance two[J]. SIAM J. Discrete Mathematics, 2003, 17(2): 264-275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部