期刊文献+

基于正交设计的动态多目标优化算法 被引量:3

Orthogonal design-based dynamic multi-objective optimization algorithm
下载PDF
导出
摘要 提出了一种基于正交设计的动态多目标优化算法(ODMOA),当环境变化时通过分析动态多目标优化问题的特点,利用历史信息对新环境下的Pareto最优解集进行预测,得到一个新的预测种群;否则在静态环境下使用正交试验法在解空间内进行系统且高效的搜索,使算法能够在当前环境下快速收敛到最优解。进行了多组对比试验,验证了该算法的有效性。 This paper presents an Orthogonal Design-based Dynamic Multi-Objective Optimization Algorithm(ODMOA). The algorithm makes use of the historical optimal solution, and then predicts a new population by considering the properties of DOPs when an environmental change is detected. Otherwise, it will cause orthogonal experimental method to make a systematic and rational search in the solution space, which makes it converge to the optima faster. Some comparison experi-ments are carried out and the results prove the effectiveness of the algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第14期42-49,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61173107) 国家高技术研究发展计划(863)(No.2012AA01A301-01)
关键词 动态多目标优化 PARETO最优解集 正交设计 环境检测 dynamic multi-objective optimization Pareto optimal solution set orthogonal design environment detection
  • 相关文献

参考文献17

  • 1Deb K,Karthik S.Dynamic multi-objective optimization anddecision-making using modified NSGA-II:a case study onhydro-thermal power scheduling[C]//Evolutionary Multi-Criterion Optimization.Berlin/Heidelberg:Springer,2007:803-817.
  • 2Farina M,Deb K,Amato P.Dynamic multi-objective optimizationproblems:test case,approximations,and applica-tions[J].IEEE Transactions on Evolutionary Computation,2004,8(5):425-442.
  • 3Zeng Sanyou,Yao Shuzhen,Kang Lishan,et al.An efficientmulti-objective evolutionary algorithm:OMOEA2II[C]//TheThird International Conference on Evolutionary Multi-Criterion Optimization(EMO’2005).Berlin:Springer,2005:108-119.
  • 4胡成玉,姚宏,颜雪松.基于多粒子群协同的动态多目标优化算法及应用[J].计算机研究与发展,2013,50(6):1313-1323. 被引量:21
  • 5Huang L,Suh I H,Abraham A.Dynamic multi-objectiveoptimization based on membrane computing for controlof time-varying unstable plants[J].Information Sciences,2011,181(11):2370-2391.
  • 6张世文,李智勇,陈少淼,李仁发.基于生态策略的动态多目标优化算法[J].计算机研究与发展,2014,51(6):1313-1330. 被引量:11
  • 7Isaacs A,Puttige V,Ray T,et al.Development of a memeticalgorithm for dynamic multi-objective optimization and itsapplications for online neural network modeling of UAVs[C]//Proc of International Joint Conference on Neural Networks(IJCNN 2008).Piscataway,NJ:IEEE Press,2008:548-554.
  • 8Zhang Z.Multiobjective optimization immune algorithm indynamic environments and its application to greenhousecontrol[J].Applied Soft Computing,2008,8(2):959-971.
  • 9Kuo S Y,Kuo C,Chou Y H.Dynamic stock trading systembased on quantum-inspired Tabu search algorithm[C]//EvolutionaryComputation(CEC),Cancun,2013:1029-1036.
  • 10Montgomery D C.Design and analysis of experiments[M].New York:Wiley,1991.

二级参考文献19

  • 1姚新,徐永.Recent Advances in Evolutionary Computation[J].Journal of Computer Science & Technology,2006,21(1):1-18. 被引量:30
  • 2Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications EJ~. IEEE Trans on Evolutionary Computation, 2004, 8(5): 425-442.
  • 3Greeff M, Engelbrecht A P. Solving dynamic multi objective problems with vector evaluated particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008 : 2917-2924.
  • 4Talukder AKMKA, Kirley M. A pareto following variation operator for evolutionary dynamic multi-objective optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008:2270-2277.
  • 5ChiKeong G, Chen T K. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization [J]. IEEE Trans on Evolutionary Computation, 2009, 13(1): 103-127.
  • 6Potter M A. The design and analysis of a computational model of cooperative coevolution [D]. Fairfax, VA: George Mason University, 1997.
  • 7van den Bergh F, Engelbreeht A P. A cooperative approach to particle swarm optimization [J].IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239.
  • 8van den Bergh F, Engelbreeht A P. Effect of swarm size on cooperative particle swarm optimizaters [C] //Proc of the Genetic and Evolutionary Computation. New York: ACM, 2001 : 1-8.
  • 9Baskar S, Suganthan P N. A novel concurrent particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ; IEEE, 2004: 792-796.
  • 10Liu Jing. Research on coevolutionary evolutionary algorithm and its application [D]. Xi'an: Xidian University, 2004.

共引文献29

同被引文献42

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部