期刊文献+

基于贝叶斯服务依赖图的错误定位 被引量:1

Bayesian Service Dependence Graph for Fault Location
原文传递
导出
摘要 服务计算领域中通常依赖复合服务实现业务逻辑复杂的任务.复合服务可以根据个体服务之间存在的数据依赖和控制依赖表示为服务依赖图.个体服务的错误可能导致复合服务失效,这使得发现复合服务中错误的服务显得尤为必要.因此,本文提出一个基于贝叶斯服务依赖图的错误定位方法,用于发现复合服务中的错误服务.该方法首先挖掘复合服务中个体服务之间的数据依赖和控制依赖关系,然后通过节点裂变的方式区分数据流与控制流,将复合服务执行流程转换为贝叶斯服务依赖图.最后基于贝叶斯服务依赖图,采用贝叶斯推理方法对错误服务进行定位.最后通过仿真实验验证了本文所提方法的有效性. Composite services are generally used for complex tasks in service computing. Composite services can be expressed as Bayesian Service Dependence Graph according to data dependencies and control dependencies in the in- dividual services. However, any fault in individual service can result in a failure of the composite service, which makes the discovery of errors in service composite service particularly necessary. Therefore, in this paper, a novel method named "Bayesian Service Dependence Graph for Fault Location" is proposed. Firstly, this method mines data depend- ence and control dependence in the individual services, and transforms the composite workflow into Bayesian Service Dependence Graph by splitting the output node into data output node and logic output node. Finally, based on Bayes- ian service dependency graph, Bayesian inference method is used to locate the service errors. At the end of this paper, a simulation experiment is conducted to evaluate the feasibility of the proposed method.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期268-274,共7页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(61572374 U1135005) 中央高校基本科研业务费资助项目(2042014kf0272 2014211020201)
关键词 服务依赖图 贝叶斯网络 错误服务定位 service dependence graph Bayesian Network fault service location
  • 相关文献

参考文献12

  • 1XIA Y L. Research on Key Techniques of Self-Recov- ery for Service Composition[D]. Hefei: University of Science and Technology of China,2010(Ch).
  • 2KIM S M, ROSU M C. A survey of public web services [-DB/OL]. [2015-02-20]. http://link, springer, com/ chapter/lO. 1007/978-3-540-30077-9_10 S page-1.
  • 3JIANG W, HU S, LEE D,etal. Continuous query for QoS-aware automatic service composition [DB/OL]. [2015-01-20]. http://ieeezplore, ieee. org/xpls/abs_all. jsp? arnumber=6257789&tag= l.
  • 4ARDISSONOL, CONSOLE L, GOY A,etal. Enhan- cing web services with diagnostic capabilities [DB/ OL]. [2015-02-10]. http://ieeexplore, ieee. org/ xpls/abs all. jsp? arnumber= 1595728.
  • 5GROSCLAUDE I. Model-based monitoring of compo- nent-based software systems[DB/OL]. [2015-02-15]. http://citeseer3c, ist. psu. edu/viewdoc/download? doi= 10, 1.1.1, 7593&rep=rep l &type= pd f,.
  • 6LIANG Q A, SU S Y W. AND/OR graph and search algorithm for discovering composite web services[J]. International Journal of Web Services Research (IJWSR), 2005, 2(4) : 48-67.
  • 7GU Z F, Li J X, XU B. Automatic service composi- tion based on enhanced service dependency graph[DB/ OL]. [2015-01-10]. http://ieee:cplore, ieee. org/ xpls/abs all. jsp? arnumber=4670182.
  • 8ZHU M M. Research on Structural Learning and In- ference in Bayesian Networks[D]. Xi'an.. Xidian U- niversity, 2013 (Ch).
  • 9余长慧,孟令奎,潘和平.基于贝叶斯网络的不确定性知识处理研究[J].计算机工程与设计,2004,25(1):1-3. 被引量:22
  • 10张岩.概率图模型及其推理技术的研究现状[J].信息技术,2013,37(5):91-93. 被引量:1

二级参考文献19

  • 1张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 2余长慧 潘和平.贝叶斯网络结构学习:用于数据挖掘和知识发现[J].武汉大学学报:信息科学版,2002,:38-40.
  • 3杨伦标 高英仪编.模糊数学原理及应用[M].广州:华南理工大学出版社,1998.94-132.
  • 4MANI A, NAGARAJAN A. Understanding quality of service for Web services[ R]. [ S. 1. ]: IBM developerWorks, 2002.
  • 5SUMRA R, ARULAZI D. Quality of service for Web services-demystification, limitations, and best practices [ EB/OL]. (2005-11). http ://www. developer. com/services/article. php/2027911.
  • 6LEE K C, et al. QoS for Web services: requirements and possible approaches, World Wide Web Consortium(W3C) note[ R]. [ S. 1. ] :[s.n. ], 2003.
  • 7RAN S. A model for Web services discovery with QoS [ J ]. ACM SIGecom Exchanges, 2003,4 ( 1-10 ).
  • 8TIAN M, GRAMM A, NAUMOWICZ T, et al. A concept for QoS integration in Web services: The 1st Web Services Quality Workshop[ R]. Rome: [ s. n. ], 2003.
  • 9Daphne Koller, Nir Friedman. Probabilistie Graphical Models: Principles and Techniques [ M ]. The MIT Press, 2009:1 -153.
  • 10Christopher M Bishop. Pattern Recognition and Machine Learning [M]. Berlin: Springer, 2006:383-422.

共引文献97

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部