期刊文献+

基于多台Kinect传感器的步态采集系统 被引量:5

Human Gait Acquisition System based on Multiple Kinect Sensors
下载PDF
导出
摘要 步态分析有助于对神经疾病患者的康复功能状态进行评价,帮助制定康复治疗方案及评定康复疗效,步态数据的采集是步态分析的前提与保障。针对现有的步态采集系统采集到的步态周期较少的问题,我们提出了一种基于多台Kinect设备,用于步态数据采集的新方法,成功延长了采集的距离。系统以建立无线局域网为基础,实现了同时控制多台Kinect;将人体模型作为采集目标,结合加权整体最小二乘法标定系统的坐标系。最后采集步态数据,实现数据的融合,取得了较好的融合效果,将步态数据与运动捕捉仪数据进行对比,证明了此系统的可行性。 Gait analysis can help to evaluate the functional status of patients with neurological diseases and develop rehabilitation programs. Collection of gait database is premise and basis for gait analysis. Many gait acquisition systems can not collect more gait cycle. Aiming at this problem,a new method of gait acquisition with Multi- Kinec was proposed in this paper and proved to be correct.The system controlled more than one Kinect simultaneously based on LAN. The total least squares algorithm and a human model as the target was used in calibrating coordinate of the system. Experimental data and good results were obtained. Finally the data of the system is compared with the 3D motion capture,which proves that this system is feasible.
出处 《生物医学工程研究》 北大核心 2016年第2期87-92,共6页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(51275282) 教育部博士点基金资助项目(20123108110009)
关键词 步态采集 Kinect传感器 坐标系转换 数据融合 Gait acquisition Kinect sensor Coordinate transformation Data fusion
  • 相关文献

参考文献15

  • 1孙嘉利,唐丹,钟世镇.三维步态分析的研究与应用[J].中国组织工程研究与临床康复,2007,11(5):944-948. 被引量:37
  • 2于昌琳,沈林勇,胡小吾,钱晋武,吴曦.帕金森病患者红外线数字化步态测量数据的半自动提取方法的建立[J].生物医学工程研究,2014,33(4):205-210. 被引量:1
  • 3Hu Z L, Hartfiel A, Tung J, et al. 3D Pose tracking of walker users lower limb with a structured - light camera on a moving platform [ J ]. Proceedings of the Association of Official Seed Analysts, 2011, 21(8) :29 -36.
  • 4Shotton J, Fitzgibbon A, Cook M, et al. Real -time human pose recognition in parts from single depth images [ C ]. Conference on Computer Vision & Pattern Recognition ,2011. 1297 - 1304.
  • 5Schwarz L A, Mkhitaryan A, Mateus D, et al. Human skeleton tracking from depth data using geodesic distances and optical flow [J]. Image & Vision Computing, 2012, 30(3) :217 -226.
  • 6Yeh S C, Hwang W Y, Huang T C, et al. A Study for the application of body sensing in assisted rehabilitation training[ C ]. Proceedings of the 2012 International Symposium on Computer, Consumer and Control IEEE Computer Society, 2012. 922 - 925.
  • 7战荫伟,于芝枝,蔡俊.基于Kinect角度测量的姿势识别算法[J].传感器与微系统,2014,33(7):129-132. 被引量:20
  • 8Cippitelli E, Gasparrini S, Spinsante S, et al. Kineet as a tool for gait analysis: validation of a real - time joint extraction algorithm working in side view. [J]. Sensors, 2015, 15 ( 1 ) : 1417 - 1434.
  • 9Sun B, Liu X, Wu X, et al. Human gait modeling and gait analysis based on Kinect [ C ]. Robotics and Automation (ICRA) , 2014 IEEE International Conference on. IEEE, 2014.
  • 10方兴,曾文宪,刘经南,姚宜斌.三维坐标转换的通用整体最小二乘算法[J].测绘学报,2014,43(11):1139-1143. 被引量:52

二级参考文献119

共引文献118

同被引文献22

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部