期刊文献+

600MW旋流燃烧器燃烧过程数值模拟

Numerical Simulation on the combustion process of 600 MW swirl burner
下载PDF
导出
摘要 本文研究在不同工况下某单只600 MW旋流燃烧器的炉内燃烧特性。使用Solidworks进行建模,通过Fluent15.0用数值模拟的方法,研究在不同内二次风旋流强度下的燃烧特点。动力学参数经过试验确定,并且通过现有工况验证,以此来得到炉内的研究结果:速度场、烟气温度场等。本文对旋流燃烧对冲锅炉的运行工作起到了一定的指导作用。 Numerical simulation was conducted on a 600MW swirl burner to investigate combustion characteristics under different conditions. This paper use Solidworks to found model and Fluent 15.0 to simulate the combustion characteristics under different intensity of the cyclone swirling secondary air. These kinetic parameters are ensured by examination to get the result, such as velocity field, the temperature field of flue gas. This paper has an instructional influence on the running of Swirl - opposed Firing boiler.
出处 《锅炉制造》 2016年第4期16-19,共4页 Boiler Manufacturing
关键词 旋流燃烧器 燃烧特性 不同内二次风旋流强度 数值模拟 swid burner combustion characteristics different intensity of the cyclone swirling seeondary air numerical simulation
  • 相关文献

参考文献1

二级参考文献38

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部