摘要
Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load range of 3-25 N, a sliding speed range of 0.03-0.3 m/s and a sliding temperature range of 25-200 ℃ at a constant sliding distance of 400 m. The morphologies of the worn surfaces and wear debris were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Comparatively, the wear properties of a hypereutectic Al-Si aluminium alloy under the same condition were measured. The results indicate that the wear rates of Mg-10Y-4Gd-1.5Zn-0.4Zr alloy are lower than that of cast+T6 AC9B aluminium alloy. The dominant mechanism of cast+T6 Mg-10Y-4Gd-1.5Zn-0.4Zr alloy is abrasion wear mixed with other wear mechanisms, which tends to be an abrasion and plastic deformation wear at high normal load such as 10-25 N, abrasion and plastic deformation wears with small participation of delamination and oxidative wears at high sliding speed such as 0.12-0.3 m/s, and an oxidative and abrasion wear at high test temperature such as 100-200 ℃. The Mg12Y1Zn1 phase in Mg-10Y-4Gd-1.5Zn-0.4Zr alloy plays an important role in the wear rate.
采用球平面滑动摩擦试验机研究Mg-10Y-4Gd-1.5Zn-0.4Zr合金的摩擦磨损行为,对磨副选用AISI 52100型轴承钢球。研究在摩擦距离(400 m)不变的条件下,载荷(3-25 N)、摩擦速度(0.03-0.3 m/s)及摩擦温度(25-200℃)对磨损率的影响。通过SEM和EDS分析合金试样的磨损表面和磨屑形貌,并在相同的摩擦磨损条件下,选用一种过共晶Al-Si合金进行对比性的摩擦磨损实验。结果表明:铸态和T6态Mg-10Y-4Gd-1.5Zn-0.4Zr合金的磨损率低于T6态过共晶AC9B铝合金的磨损率。T6态Mg-10Y-4Gd-1.5Zn-0.4Zr合金的主要磨损机制是粘着磨损,高载荷(10-25 N)条件下趋于粘着磨损和塑性变形混合磨损机制;高摩擦速度(0.12-0.3 m/s)条件下趋于粘着磨损和塑性变形,并伴有剥层磨损和氧化磨损;高温(100-200℃)条件下趋于氧化磨损和粘着磨损混合磨损机制。Mg-10Y-4Gd-1.5Zn-0.4Zr合金中Mg12Y1Zn1相的数量及稳定性直接影响合金的磨损率。
基金
Project(51404082)supported by the National Natural Science Foundation of China
Project(E201442)supported by the Natural Science Foundation of Heilongjiang Province,China
Project(12531116)supported by the Foundation of Educational Committee of Heilongjiang Province,China
Project(2013RFQXJ137)supported by the Harbin Special Funds for Creative Talents in Science and Technology,China
Project(201510)supported by Science Funds for the Young Innovative Talents of HUST,China