期刊文献+

基于特征值合并的语音增强算法 被引量:2

Eigen-value Combination Approach for Speech Enhancement
原文传递
导出
摘要 为进一步抑制噪声,提出一种基于特征值合并的语音增强算法。在经典的内嵌式预白化子空间方法的基础上,用特征值合并来提高语音质量。研究发现,对含噪语音的协方差矩阵进行特征值分解后,大特征值分量主要包含语音信息,而小特征值分量主要包含噪声,特征值分量按特征值从小到大排序后,剔除相邻的小特征值分量,可有效抑制噪声,提高语音质量。相比于其它方法,基于特征值合并的语音增强算法能有效工作于各种噪声环境中,显著提高信噪比,并有更好的语音可懂度。 In order to further suppress noise, a kind of speech enhancement algorithm based on Eigen-value merge was proposed. Eigen-values combination was used to improve the speech quality on the basis of the classic embedded pre-whitening subspace methods. The study shows that, after decomposing the covariance matrix of speech signals with noise, the larger Eigen-value component mainly includes speech information, and the smaller Eigen-value component mainly contains noise. Sorted by Eigen-values from small to big, the adjacent large Eigen-value component replaces with small Eigen-value component, which can effectively suppress noise and improve the quality of speech. Compared with other speech enhancement algorithm, this algorithm based on Eigen value merger can work effectively in a variety of noisy environment, significantly improves the SNR, and has better speech intelligibility.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第7期1622-1627,共6页 Journal of System Simulation
基金 国家自然科学基金(61272315 60842009) 浙江省自然科学基金(Y1110342)
关键词 语音增强 子空间方法 特征值分解 语音质量 speech enhancement subspace method eigen-value decomposing speech quality
  • 相关文献

参考文献16

  • 1Boll S. Suppression of Acoustic Noise in Speech Using Spectral Subtraction [J]. IEEE Transactions on Acoustics, Speech and Signal Processing (S0096-3518), 1979, 27(2): 113-120.
  • 2Ephraim Y, Malah D. Speech Enhancement Using a Minimu m Mean Square Error Short-time Spectral Amplitude Estimator [J]. IEEE Transactions on Acoustics, Speech and Signal Processing (S0096-3518), 1987, 32(6): 1109-1121.
  • 3Wiener N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series [M]. USA: The MIT Press, 1964.
  • 4Plapous C, Marro C, Scalart E Improved Signal-to-Noise Ratio Estimation for Speech Enhancement [J]. IEEE Transactions on Audio, Speech and Language Processing, (S1558-7916), 2006, 14(6): 2098-2108.
  • 5Ephraim Y, Van-Trees H L. A Signal Subspace Approaches for Speech Enhancement [J]. IEEE Transactions on Speech and Audio Processing (S1063-6676), 1995, 3(4): 251-266.
  • 6Yi H, Loizou P C. A Generalized Subspace Approach for Enhancing Speech Corrupted by Colored Noise [J]. IEEE Transactions on Speech and Audio Processing, (S1063-6676), 2003, 11(4): 334-341.
  • 7Borowicz A, Petrovsky A. Signal Subspace Approach for Psychoacoustically Motivated Speech Enhancement [J]. Speech Communication (S0167-6393), 2011, 53(2): 210-219.
  • 8Mittal U, Phamdo N. Signal/noise KLT Based Approach for Enhancing Speech Degraded by Colored Noise [J]. IEEE Transactions on Speech and Audio Processing (S1063-6676), 2000, 8(2): 159-167.
  • 9Dendrinos M, Bakamidis S, Garayannis G. Speech Enhance-ment from Noise: A Regenerative Approach [J]. Speech Communication (S0167-6393), 1991, 10(2): 45-57.
  • 10Jensen S H, Hansenn P C, Hansen S D, et al. Reduction of Broad-band Noise in Speech by Truncated QSVD [J]. IEEE Transactions on Speech and Audio Processing, (S1063-6676), 1995, 3(6): 439-448.

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部