期刊文献+

半群R_n的主因子的极大正则子半群 被引量:1

Maximal regular subsemigroups of principal factors of the semigroup R_n
下载PDF
导出
摘要 设Sing_n是X_n上的奇异变换半群。令R_n={α∈Sing_n:︱xα^(-1)︱≥︱im(α)︱(x∈im(α))},则R_n是半群Sing_n的子半群。对任意的n≥4,研究了半群R_n的主因子的极大正则子半群的完全分类。 Let Singnbe the semigroup of all singular selfmaps on Xn,and let Rn={α∈Singn:︱xα^-1︱≥︱im(α)︱(x∈im(α))},it is easy to show that Rnis a subsemigroup of Singn. For arbitrary n ≥ 4,we have studied that the classification completely of maximal regular subsemigroups of principal factors of semigroup Rn.
出处 《贵州师范大学学报(自然科学版)》 CAS 2016年第3期67-70,共4页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金项目(批准号11461014)
关键词 变换半群 主因子 极大正则子半群 transformation semigroup principal factor maximal regular subsemigroup
  • 相关文献

参考文献9

  • 1REILLY N R.Maximal inverse subsemigroups of TX[J].Semigroup Forum,1977,15(1):319-326.
  • 2YANG Xiuliang.A classification of maximal inverse subsemigroups of finite symmetric inverse semigroups[J].Communication in algebra,1999,27(8):4089-4096.
  • 3YOU T J.Maximal regular subsemigroups of certain semigroups of transformations[J].Semigroup Forum,2002,64(3):391-396.
  • 4ZHAO P.A classification of maximal idempotent-generated subsemigroups of singular Orientation-preserving transformation semigroups[J].Semigroup Forum,2009,79(2):377-384.
  • 5DIMITROVA I,KOPPITZ J.On the maximal regular subsemigroups of ideals of order-preserving or order-reversing transformations[J].Semigroup Forum,2011,82(1):172-180.
  • 6DIMITROVA I,FERNANDES V H,KOPPITZ J.The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain[J].Publications Mathematical Debrecen,2012,81(1):11-30.
  • 7ZHAO P,HU H B,YOU T J.A note on maximal regular subsemigroups of transformation semigroups[J].Semigroup Forum,2014,88(2):324-334.
  • 8UMAR A.Enumeration of certain finite semigroups of transformations[J].Discrete Mathematics,1998,189(1):291-297.
  • 9HOWIE J M.Fundamentals of semigroup theory[M].Oxford:Oxford University press,1995.

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部