期刊文献+

一种异结构分数阶混沌系统的同步滑模控制器设计 被引量:3

Design of a Sliding Mode Controller for Synchronization of Fractional-Order Chaotic Systems with Different Structures
下载PDF
导出
摘要 针对分数阶混沌系统异结构的同步问题,基于滑模控制理论和自适应控制理论设计了一个具有较强鲁棒性的分数阶积分滑模面,提出了一种自适应滑模控制器以实现三维分数阶混沌系统的异结构同步.同时,利用所设计的控制器实现了分数阶Liu系统与分数阶Arneodo系统的异结构的滑模控制同步,以及分数阶Chen系统与分数阶Liu系统的异结构混沌系统的滑模控制同步.数值模拟结果表明,所设计的控制器具有较好的有效性和可行性. Based on the sliding mode control and adaptive control theory,this paper investigated the synchronization of fractional-order chaotic systems with different structures.A fractional order integral sliding surface with strong robustness was designed,and an adaptive sliding controller was proposed for synchronization of fractional-order chaotic systems with different structures.Numerical simulations of the synchronization of Liu chaotic system and Arneodo chaotic system,and the synchronization of Chen chaotic system and Liu chaotic system were conducted respectively.The simulation results verify the validity and feasibility of the adaptive sliding controller.
作者 魏静 潘光
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第6期849-853,860,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(51279165)资助
关键词 分数阶混沌系统 混沌同步 异结构 滑模控制 fractional-order chaotic systems chaos synchronization different structures sliding mode control
  • 相关文献

参考文献17

  • 1KUNTANAPREEDA S. Robust synchronization of fractional-order unified chaotic systems via linear con troll J]. Computer and Mathematics with Applica- tions, 2012, 63(1):183-190.
  • 2SONG L, YANG J Y, XU S Y. Chaos synchroniza- tion for a class of nonlinear oscillators with fractional order[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 72(5) :2326-2336.
  • 3FAIEGHI M R, DEI.AVARI H. Chaos in fractional- order Genesio-Tesi system and its synchronization [J]. Communications in Nonlinear Science and Numer- ical Simulation, 2012, 17(2) :1106-1117.
  • 4ZHANG K, WANG H, FANG H. Feedback control and hybrid projective synchronization of a fractional- order newton-leiplink system[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (1) :317-328.
  • 5YANG C, TAO C H, WANG P. Comparison of feedback control methods for a hyperchaotic Lorenz system[J]. Physics Letter A, 2010, 374(5): 729 732.
  • 6SALARIEHA H, ALASTY A. Adaptive synchroni zation of two chaotic systems with stochastic un known parameters[J]. Communications in Nonlinear Science and Numercal Simulation, 2009, 14(2) : 508- 519.
  • 7CAI N, JING Y W, ZHANG S Y. Generalized pro- jective synchronization of different chaotic system based on anti-symmetric structure[J]. Chaos Solitons and Fractals, 2009, 42(2):1190-1196.
  • 8SALARIEHA H, ALASTY A. Chaos synchroniza-tion of nonlinear gyros in presence of stochastic exci- tation via sliding mode controlEJJ. Journal of Sound and Vibration, 2008, 313(3/5).. 760-771.
  • 9ODIBAT Z M. Adaptive feedback control and syn- chronization of non-identical chaotic fractional order systems[J]. Nonlinear Dynamics, 2010, 60(4): 479- 487.
  • 10曹鹤飞,张若洵.基于滑模控制的分数阶混沌系统的自适应同步[J].物理学报,2011,60(5):121-125. 被引量:13

二级参考文献47

共引文献80

同被引文献29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部