摘要
国内大量学者对含氧煤层气液化流程中各阶段的爆炸危险性进行了分析评价,而评价过程中采用的超低温下甲烷的爆炸极限数据都是基于现有的经验公式计算得到的。通过低温下甲烷爆炸极限实验数据与该等经验公式的计算结果进行对比发现,该等经验公式在计算超低温下甲烷的爆炸极限时已不再适用,因此前人对煤层气液化流程爆炸危险性的评价结果不完全正确。针对现有低温下甲烷爆炸极限数据的局限性,构建了一套测试超低温工况下甲烷爆炸极限的实验装置,并对实验过程中爆炸容器的热应力进行了建模分析。研究结果表明:爆炸过程中,容器会产生很大的热应力,超过了材料的许用应力;在容器体积不变的情况下可通过增加长径比来减小热应力。
The scholars at home have the methane explosion limit data attained under ultra-low temperatures and the existing empirical formula adopted to analyze and evaluate explosion risks in each stage of oxygenbearing CBM liquefaction process. Comparing its experimental data with the calculation result through empirical formula shows that this empirical formula is inapplicable when calculating methane explosion limit under cryogenic conditions and it may results in incorrect results in explosion risk evaluation. Considering this, a testing device for the methane explosion limit under low temperature conditions was designed and in the process of experiment, the thermal stress of explosion containers was modeled to show that, during the explosion process, the thermal stress produced can exceed allowable stress of the material; and in the case of a constant container volume, the thermal stress can be lowered by increasing the length to diameter ratios. The aforesaid results have guiding significance for the safety in testing the methane explosion limit under ultra-low temperatures.
出处
《化工机械》
CAS
2016年第3期302-310,共9页
Chemical Engineering & Machinery
基金
国家科技重大专项大型油气田及煤层气开发(2008ZX05017-04-01)
中央高校基本科研业务费专项资金项目(15CX06071A)
关键词
煤层气液化流程
实验装置设计
超低温
甲烷
爆炸
热应力
CBM liquefaction process, testing deice design, ultra-low temperature, methane, explosion, thermal stress