期刊文献+

多塔悬索桥结构变形的实用计算方法 被引量:14

Practical Calculation Method for Structural Deformation of Multi-span Suspension Bridge
原文传递
导出
摘要 为解决利用有限元法求解活载作用下多塔悬索桥结构变形时工作量大、不便于参数影响分析的问题,基于结构内力按刚度分配的原理,建立了一种新的实用计算方法。首先添加各桥塔塔顶纵桥向位移约束,利用梁比拟法导出活载作用下缆索竖向位移表达式,并用能量守恒原理建立补充方程,分别求解各跨缆索结构的竖向位移和水平力;其次,依次解除前一步中添加的约束,对已求得的各桥塔两侧缆索水平力,将其力差按刚度分配给桥塔和相邻跨,得到多塔悬索桥活载作用下的最终位移;最后,以一座两主跨均为1 080m的三塔悬索桥为例与有限元计算结果进行了对比。研究结果表明:所建立的方法与有限元法相比,缆索竖向位移及各桥塔纵桥向位移计算相对误差一般在5%以内,能够为多塔悬索桥初步设计提供快速解算方法,并为有限元计算结果的校核提供参考。 In order to solve the problems of heavy workload and inconvenience in analysis of its parameters when solving the structural deformation of multi-span suspension bridge under live loading by FEM,a novel and practical calculation method was established based on the principle that structural internal force distribution relates to rigidity.Firstly,longitudinal displacement constraints were added at the top of each pylon,and vertical displacement expression of cable structure under live loading was derived by using the analogy beam method.Through the principle of energy conservation,additional equation was established. Thus the vertical displacements and horizontal forces of the cable structures in each span were calculated respectively.Secondly,the previous additional constraints were released in sequence.For the obtained horizontal forces of the cable in each pylon,by distributing the unbalanced forces of the cables into the each pylon and adjacent span according to the rigidity,the final displacements under live loading were obtained.Finally,by employing a three pylon suspension bridge with two main spans of 1 080 m,the results of proposed method were compared with those of finite element method.The results show that vertical displacement error of cable and longitudinal displacement error of each pylon are generally less than 5%.The proposed method providesaquick calculation approach for the preliminary design of multi-span suspension bridges and references for the verification of finite element calculation results.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2016年第6期207-213,共7页 China Journal of Highway and Transport
基金 国家自然科学基金项目(51178396)
关键词 桥梁工程 水平力分配法 梁比拟法 能量原理 多塔悬索桥 实用计算方法 bridge engineering horizontal force distribution method analogy beam method energy principle multi-span suspension bridge practical calculation method
  • 相关文献

参考文献4

二级参考文献30

  • 1许世展,高传明,贺拴海,刘来君.悬索桥主塔纵向稳定的实用计算[J].长安大学学报(自然科学版),2005,25(1):41-43. 被引量:13
  • 2肖汝诚 项海帆.确定悬索桥合理设计状态的理论方法及程序系统研究.公路工程计算机应用论文集[M].长沙:湖南科学技术出版社,1996.10.
  • 3尼尔斯J 林长川等(译).缆索承重桥梁-构思与设计[M].北京:人民交通出版社,1992..
  • 4肖汝诚 林平.大跨径砼悬索桥的施工控制.第十二届全国桥梁会议论文集[M].,1994.10.
  • 5Stephen G Buonopane, Billington David E Theory and history of suspension bridge design from 1823 to 1940 [J] Structural Engineering, ASCE, 1993, 119(3): 954--977.
  • 6Pugsley A G. The gravity stiffness of a suspension bridge cable [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1952, 5(3): 385--394.
  • 7Prem Krishna. Cable suspended roofs [M]. McGraw-Hill Book Company, 1978.
  • 8Max lrvine H. Cable structures [M]. Cambridge, Massachusetts: The MIT Press. 1981.
  • 9Alan Jennings. Gravity stiffness of classical suspension bridges [J]. Journal of Structural Engineering, 1983, 109(1): 16--36.
  • 10Jimsing N J. Cable supported bridges--Concept & Design [M]. England: John Wiley & Sons, 1997.

共引文献58

同被引文献73

引证文献14

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部