期刊文献+

金纳米交叉结构的光学性质及传感特性研究

Research on Optical Properties and Sensitivity of Gold Nanorod Complexes
原文传递
导出
摘要 利用时域有限差分法分别模拟计算了X型金纳米结构和L型纳米天线以及由这两种结构所组成的金纳米交叉结构的消光光谱和近场分布,并研究了金纳米交叉结构对周围介质折射率变化的敏感性。研究结果表明,X型金纳米结构在入射光正入射时能激发起偶极共振模式而在斜入射时可以同时激发起偶极和四极共振模式。L型纳米天线的成键和反成键共振模式的产生可以通过改变入射光偏振方向进行控制。此外入射光偏振方向变化时在金纳米交叉结构中都可产生法诺共振效应,由于激发起法诺共振效应,金纳米交叉结构的光谱线型更加精细,传感质量因子可达到12.5,这些结果可指导金纳米交叉结构作为纳米光子器件用于生物传感方面。 The extinction spectra and distribution of electric near field of the X-shaped gold nanostructure,L-shaped nanoantennas and gold nanocross structure composed of these two kinds of structures were calculated by using the finite-difference time-domain method(FDTD).The sensitivity of gold nanocross structure to the change of refractive index of surrounding medium was studied.The results show that X-shaped gold nanostructures can be excited simultaneously dipole and quadrupole resonance modes at oblique incidence of the incident light and only the dipole resonance mode is excited when the incident light is incident.Generation of bonding and antibonding resonance mode of L-shaped nanoantennas can be controlled by changing the polarization direction of the incident light.In addition,gold nanocross structure most can produce fano resonance effect with polarization of incident light varying.Due to excite the fano resonance effect,the spectral line of gold nanocross structure becomes more stringent and the figure of merit(FOM)can reach 12.5.These results can be used to guide the application of gold nanocross structure as a nanophotonic device in the biological sensing.
作者 李健 白静
出处 《半导体光电》 CAS 北大核心 2016年第3期373-377,共5页 Semiconductor Optoelectronics
关键词 局域表面等离子体共振 金纳米交叉结构 时域有限差分法 法诺共振 折射率敏感度 localized surface plasmonic resonance gold nanocross structure finite-difference time-domain method fano resonance refractive-index sensitivity
  • 相关文献

参考文献16

  • 1Noginov M A,Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259) : 1110- 1112.
  • 2Ye J,Wen F, Sobhani H, et al. Plasmonic nanoclusters., near field properties of the Fano resonance interrogated with SERS [J]. Nano Lett. , 2012, 12(3):1660-1667.
  • 3Chang W S, Lassiter J B, Swanglap P, et al. A plasmonic Fano switch[J]. Nano Lett. , 2012, 12(9):4977-4982.
  • 4Luklyanchuk B,Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nat. Mater.,2010, 9(9) :707-715.
  • 5Liu S D,Yang Y B, Chen Z H, et al. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry[J]. J. Phys. Chem. C,2013, 117(27):14218- 14228.
  • 6Verellen N,Sonnefraud Y, Sobhani H, et al. Fano resonances in individual coherent plasmonic nanocavities[J]. Nano Lett. , 2009, 9(4):1663- 1667.
  • 7Yuan H F, Jing B Z, Ye F Y, et al. Generating and manipulating higher order Fano resonances in dual disk ring plasmonic nanostructures[J]. ACS Nano, 2012, 6(6) : 5130.
  • 8黄运欢,殷丽艳,蔡东进,齐信,薛保平.等离子体四聚体中法诺共振的调制[J].激光与光电子学进展,2015,52(2):229-235. 被引量:3
  • 9Wang D, Yu X, Yu Q. X shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering[J]. Nanotechnol. , 2012, 23(40):1-7.
  • 10Verellen N,Van Dorpe P, Huang C, et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing[J]. Nano Lett. , 2011, 11 (2) :391-397.

二级参考文献32

  • 1Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Optics Nature, 2003, 424(14): 824-830.
  • 2K L Kelly,E Coronado, L L Zhao et al.. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviromuent [J]. J Phys Chem B, 2003, 107(3): 668-677.
  • 3Fang Z, Cai J, Yan Z, et al.. Removing a wedge from a metallic nanodisk reveals a Fano resonance [J]. Nano Lett, 2011, ll(10): 4475-447.
  • 4Yang Z J, Zhang Z S, Zhang L H, et al.. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers [J]. Opt Lett, 2011,36(9): 1542-1544.
  • 5A Cleary, A Clark, A Glidle, et al.. Fabrication of double split metallic nanorings for Raman sensing [J]. Microelectronic Engineering, 2009, 86(4-6): 1146-1149.
  • 6Liu S D, Yang Z, Liu R P, et al.. High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity [J]. J Phys Chem C, 2011, 115(50): 24469-24477.
  • 7Martin-Moreno L, Garcia-Vidal F J, Lezec H J, et al.. Theory of extraordinary optical transmission through subwavelength hole arrays [J]. Phys Rev Lett, 2001, 86(6): 1114-1117.
  • 8Hao F, Larsson E M, Ali T A, et al.. Shedding light on dark plasmons in gold nanorings [J]. Chem Phys Lett, 2008, 458(4): 262-266.
  • 9Liu S D,Zhang Z S, Wang Q Q. High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation [J]. Opt Express, 2009, 17(4): 2906-2917.
  • 10Lahiri B, Holland G, Aksyuk V C, et al.. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique [J]. Nano Lett, 2013, 13(7): 3218-3224.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部