期刊文献+

基于端元子集优选的高光谱解混算法研究 被引量:1

HYPERSPECTRAL UNMIXING ALGORITHM BASED ON ENDMEMBER SUBSET OPTIMISATION
下载PDF
导出
摘要 针对采用最大体积单体MVS(Maximization Volume Simplex)端元提取算法进行端元初选时存在相似端元光谱问题,提出一种光谱信息散度SID(Spectral Information Divergence)和光谱梯度角SGA(Spectral Gradient Angle)相结合以区分两个相似端元光谱的方法。该方法对经过端元初选之后的端元子集进行端元的二次选择,采用以SID_SG作为最相似端元选择的判据,除去相似端元,降低相似端元对解混精度的影响,利用全约束最小二乘法进行丰度估计。实验结果表明,提出的优化方法与传统方法相比,提高了端元的选择精度,重构影像与原始影像之间的均方根误差RMSE(Root Mean Square Error)也有所降低,分布更加均匀。该方法对高光谱遥感影像进行深度解译具有十分重要的意义。 For the problem of maximisation volume simplex( MVS) endmember extraction algorithm that when applying in primary endmembers selection it would have similar endmembers spectra,we proposed an algorithm which distinguishes two similar endmember spectra by combining the spectral information divergence( SID) and the spectral gradient angle( SGA). This algorithm carries out secondary selection on the endmember subset derived from primary endmembesr selection,and adopts SID_SG rule as the criteria for selecting the most similar endmembers to remove the similar endmembers and to reduce the influence of similar endmembers on unmixing accuracy,and uses the full constraint least square for abundance estimation. Experimental results showed that proposed optimisation algorithm improved the accuracy of endmember selection than the traditional method,the root mean square error( RMSE) between reconstruction images and original image was rather reduced,and the distribution was more evenly as well. The algorithm is of very great significance to the deep interpretation on hyperspectral remote sensing image.
出处 《计算机应用与软件》 CSCD 2016年第7期252-256,共5页 Computer Applications and Software
基金 国家高技术研究发展计划项目(2012AA12A405) 国家自然科学基金项目(61172144)
关键词 光谱解混 端元初选 二次提取 除去端元 解混算法 Spectral unmixing Primary endmembers selection Secondary extraction Removal of endmember Unmixing algorithm
  • 相关文献

参考文献3

二级参考文献24

  • 1耿修瑞,童庆禧,郑兰芬.一种基于端元投影向量的高光谱图像地物提取算法[J].自然科学进展,2005,15(4):509-512. 被引量:6
  • 2ZHANG J H,WANG H.Iterative learning-based minimum tracking error entropy controller for robotic manipulators with random communication time delays[J].IET Control Theory and Applications,2008,2(8):682-692.
  • 3LI T J,FUJIMOTO Y.Control system with high-speed and real-time communication links[J].IEEE Trans actions on Industrial Electronics,2008,55(4):1548-1557.
  • 4ZHANG W,BRANICKY M S,PHILIPS S M.Stability of networked control systems[J].IEEE Control Systems Magazine,2001,21(1):84-99.
  • 5FANG Y,CHOW T W S.2-D analysis iterative learning controller for discrete-time systems with variable initial conditions[J].IEEE Transactions on Circuits and Systems,2003,50(5):722-727.
  • 6FANG Y,YENG C S,FENG G G.Convergence analysis of iterative learning control with uncertain initial condition[C] //The 4th World Congress Intelligent Control and Automation,Shanghai.2002,2:961-965.
  • 7PAN Y J,MARQUEZ H J,CHEN T W,SHENG L.Effects of network communications on a class of learning controlled nonlinear systems[J].International Journal of Systems Science,2009,40(7):757-767.
  • 8WANG D W.Convergence and robustness of discrete time nonlinear systems with iterative learning control[J].Automatica,1998,34(11):1445-1448.
  • 9ARIMOTO S,KAWAMURA S,MIYAZAKI F.Bettering operation of dynamic systems by learning:A new control theory for servomechanism or mechanical systems[C] //The 23rd IEEE Conference on Decision and Control,Las Vegas.1984,23:1064-1069.
  • 10Shimabukuro Y E, et al. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data.IEEE Transaction on Geoscience and Remote Sensing, 1991, 29(1): 16

共引文献32

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部