期刊文献+

RS-SVM模型在大坝安全监控中的应用 被引量:9

Application of RS-SVM Model in Dam Safety Monitoring
下载PDF
导出
摘要 将粗集理论与支持向量机结合起来,研究了针对大坝安全监测数据序列中出现小样本、短序列、不确定等情况时的监控模型,利用粗集理论中的知识约简,引入属性重要度概念,对输入数据预处理,简化大坝工作性态影响因素和效应量之间的映射关系,实现了支持向量机模型输入的优化设计,使模型更能体现大坝的工作机制。以某混凝土大坝为例,分别采用统计模型、BP神经网络模型、标准SVM模型以及RS-SVM模型进行建模分析,对比验证了RS-SVM模型方法的可行性。 In this paper,the safety monitoring model of small sample,short sequence and uncertainty in dam monitoring sequence wasresearched by combining rough sets with support vector machines. Using the knowledge reduction in rough sets and introducing the concept ofattribute importance to preprocess the input data,it simplified the relationship between influence factors and effect quantity of dam workingstate and realized the optimization design of input vector of SVM model,which could reflect working mechanism of the dam more explicitly.Taking a concrete dam as an example,the feasibility and characteristics of the RS-SVM method was verified respectively by the statisticalmodel,BP neural network model and standard SVM model in the paper.
出处 《人民黄河》 CAS 北大核心 2016年第7期130-133,共4页 Yellow River
关键词 大坝安全 支持向量机 粗集理论 监控模型 dam safety support vector machines rough sets monitoring model
  • 相关文献

参考文献8

二级参考文献36

  • 1杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25-29. 被引量:74
  • 2唐晓静,杨桂元.组合预测系数的确定方法[J].财贸研究,1994,5(6):61-63. 被引量:5
  • 3李强,李端有.滑坡位移监测动态预报时间序列分析技术研究[J].长江科学院院报,2005,22(6):16-19. 被引量:28
  • 4CHURN-JUNG LIAN. An Overview of Rough Set Semantics for modal and Quantifier Logics [J]. International Journal of Uncertainly,Fuzziness and Knowledge-Base System. 2000,8(1):93-118.
  • 5S Wong. Comparison of rough sets and statistical methods in inductive learning [J]. Int J Man-Machine Studies,1986,26:53-7.
  • 6Bazan Jan G,Skowron A,Synak Piotr. Market Data Analysis:A Rough Set Approach [R]. Technical Report:6/94 University of Warsaw, 1994.
  • 7Golan R,Ziarko W. A Methodology for Stock Market Analysis Using Rough Set Theory [A]. Proceedings of IEEE/IAFE Conference on Computational Intelligence for Fi ancial Engineering [C]. New York City,1995.32-40.
  • 8Nguyen S H. Discretization of real value attributes [A].Boolean reasoning approach [C]. Warsaw:Warsaw University,1997.
  • 9Lenarcik A,Piasta Z. Discretication of Condition Attributes Spaces[A]. Intelligent Decision Support [C]. Kluwer:Roman Slowinski,1992.373-389.
  • 10WANG Jue,MIAO Duo-Qian. Analysis on attribute reduction strategies of rough set[J]. J. Of Computer Science and Technology,1998,13(2): 189-192.

共引文献57

同被引文献104

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部