期刊文献+

基于粒子滤波和压缩感知的目标跟踪算法 被引量:1

Target tracking algorithm based on particle filter and compressive sensing
下载PDF
导出
摘要 为了解决目标跟踪过程中出现的目标遮挡和光照变化问题,提出一种基于粒子滤波和压缩感知的目标跟踪算法。算法融合颜色特征和纹理特征来描述目标,增强算法在光照变化和复杂环境下的鲁棒性;利用压缩感知理论对特征进行降维,提高算法实时性;最后,根据粒子滤波原理估计目标状态,得到目标位置。实验结果表明,本算法在有效减少算法运行时间的前提下,能够准确跟踪遮挡和光照变化情况下的目标。 In order to solve the problem of object occlusion and illumination change in the process of target tracking,a target tracking algorithm based on particle filter and compressive sensing is proposed in this paper.The color feature and texture feature are fused to describe the object to improve the robustness of the algorithm under the illumination change and complex environment.The theory of compressive sensing is used to reduce the dimension of the feature,and it can improves the real-time performance of the algorithm.Finally,the target condition is estimated according to the principle of particle filter,and then the target position is obtained.The experimental results show that the algorithm can effectively reduce the running time of the algorithm,and can accu-rately track the target under occlusion and illumination changes.
出处 《电子技术应用》 北大核心 2016年第7期130-133,共4页 Application of Electronic Technique
关键词 粒子滤波 压缩感知 目标遮挡 光照变化 particle filter compressive sensing target occlusion illumination changes
  • 相关文献

参考文献8

  • 1BAR-SHALOM Y,KIRUBARAJAN T,LIN X.Probabilistic data association techniques for target tracking with applications to sonar,radar and EO sensors[J].IEEE Aerospace and Electronic Systems Magazine,2005,20(8):37-56.
  • 2MEI X,LING H.Robust visual tracking and vehicle classification via sparse represent-ation[J].IEEE Trans,on Pattern Analysis and Machine Intelligence,2011,33(11):2259-2272.
  • 3HESS R,FERN A.Discriminatively trained particle filters for complex multi-object tracking[C].Proc.of the IEEE Conference on Computer Vision and Pattern Recognition,2009:240-247.
  • 4Zhang Kaihua,Zhang Lei,Yang Ming-Hsuan.Real-time compressive tracking[C].Proceedings of the 12th,European conference on Computer Vision,Florence,Italy,2012,3:866-879.
  • 5DOUCET A,GODSILL S,ANDRIEU C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 6杨欣,刘加,周鹏宇,周大可.基于多特征融合的粒子滤波自适应目标跟踪算法[J].吉林大学学报(工学版),2015,45(2):533-539. 被引量:17
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 8朱秋平,颜佳,张虎,范赐恩,邓德祥.基于压缩感知的多特征实时跟踪[J].光学精密工程,2013,21(2):437-444. 被引量:48

二级参考文献100

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献771

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部