期刊文献+

Fe_3O_4@SiO_2@mTiO_2介孔多功能纳米复合颗粒的制备及载药能力 被引量:4

Synthesis of Mesoporous Fe_3O_4@SiO_2@mTiO_2 Multifunctional Nanoparticles with the Capability for Drug Loading
下载PDF
导出
摘要 以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m^2·g^(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。 In this paper, Fe3O4@SiO2@mTiO2 (m was short for mesoporous) core-shell structured nanoparticles with luminescence, magnetic, microwave to heat responsive properties and high specific surface area (640 m2· g-1) were synthesized by Sol-gel method and template method. XRD patterns showed that the SiO2 and mesoporous TiO2 are coated on the surface of Fe3O4 particles after calcined at 300 ℃. TEM images showed that the obtained nanoparticles have obvious core-shell structure and spherical morphology. The diameter of Fe3O4@SiO2@mTiO2 nanoparticles is about 60-70 nm, the shell shows a gray color with an average thickness of about 10 nm. The nanopartieles not only have the large accessible pore size (2.8 nm) for the physical adsorption of drug molecules and showed good luminescent properities, strong magnetic and unique microwave to heat responsive properties.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2016年第7期1154-1160,共7页 Chinese Journal of Inorganic Chemistry
基金 湖南省教育厅科学研究重点(No.13A047)资助项目
关键词 Fe3O4@SiO2@mTiO2 介孔 磁性 荧光性 微波热转换性 药物负载 Fe3O4@SiO2@mTiO2 mesoporous magnetic luminescent microwave to heat responsive properties drug loading
  • 相关文献

参考文献21

  • 1Xiong W, Mazid R, Yap L W, et al. Nanoscale, 2014,6:14388 -14396.
  • 2Lauth V, Maas M, Rezwan K J, et al. J. Mater. Chem. B, 2014, 2:7725-7729.
  • 3Shang H B, Chen F, Wu J, et al. RSC Adv., 2014,4:53122- 53128.
  • 4Peng H X, Cui B, Zhao W W, et al. Expert Opin. Drug Deliv., 2015,12(9):1-7.
  • 5Qiu H J, Cui B, Li G M, et al. J. Phys. Chem. C, 2014,118.(27): 14929-14933.
  • 6Hu S, Wu G, Huang Z J, et al. Nanosci. Nanotechnol., 2010, 10(11):7592-7596.
  • 7Wang T, He J P, Zhou J H. J. Solid State Chem., 2010,183: 2797-2800.
  • 8曹杰,何定庚,何晓晓,王柯敏,赵应香.pH响应的介孔二氧化硅纳米颗粒的制备及可控释放[J].高等学校化学学报,2012,33(5):914-918. 被引量:9
  • 9Lee J, Lee N, Kim T, et al. Acc. Chem. Res., 2011,44:893- 902.
  • 10Argyo C, Weiss V, Brauchle C, et al. Chem. Mater., 2014, 26:435-441.

二级参考文献19

  • 1HEXiao-Xiao(何晓晓),HAlLuo(海罗),WANGKe-Min(王柯敏),wuxu(伍旭),TANWei-Hong(谭蔚泓).Chem.J.ChineseUniversities(高等学校化学学报)[J].2009,30(2):283-288.
  • 2Trewyn B. G. , Slowing I. I. , Giri S. , Chen H. T. , Lin V. S. Y.. Acc. Chem. Res. [J]. 2007, 40:846-853.
  • 3Sun J. T. , Hong C. Y. , Pan C. Y.. J. Phys. Chem. C[J]. 2010, 114:12481-12486.
  • 4Slowing I. I. , Trewyn B. G. , Giri S. , Lin V. S. Y.. Adv. Funct. Mater. [J]. 2007, 17:1225-1236.
  • 5Vallet R. M. , Balas F. , Arcos D.. Angew. Chem. Int. Ed. [J]. 2007, 46:7548-7558.
  • 6Kim H. , Kim S. , Park C. , Lee H. , Park H. J. , Kim C.. Adv. Mater. [J]. 2010, 22:4280-4283.
  • 7Lin Q. N. , Huang Q. , Li C. Y. , Bao C. Y. , Liu Z. Z. , Li F. Y. , Zhu L. Y.. J. Am. Chem. Soc. [J]. 2010, 132:10645-10647.
  • 8Park C. , Kim H. , Kim S. , Kim C.. J. Am. Chem. Soc. [J]. 2009, 131:16614-16615.
  • 9Leung K. C. F., Nguyen T. D., Stoddart J. F., Zink J. I.. Chem. Mater. [J]. 2006, 18:5919-5928.
  • 10Schlossbauer A. , Wamcke S. , Gramlich P. M. E. , Kecht J. , Manetto A. , Carell T. , Bein T.. Angew. Chem. Int. Ed. [J]. 2010, 49 : 4734-4737.

共引文献8

同被引文献36

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部