期刊文献+

基于多目标遗传算法的贝塞尔超声变幅杆优化设计方法研究 被引量:4

Optimal Design Method for Bezier Ultrasonic Horn Based on Multi-objective Genetic Algorithm
下载PDF
导出
摘要 为设计满足蜂窝复合材料加工要求的高性能超声变幅杆,提出了一种基于多目标遗传算法的超声变幅杆优化设计方法。以变幅杆的结构参数为设计变量,以谐振频率和放大系数为优化设计目标,建立了贝塞尔超声变幅杆的数学优化模型。通过在遗传算法中调用ANSYS仿真软件,对变幅杆进行了建模和动力学分析,获得了计算目标函数所需的参数,采用多目标遗传算法求出了Pareto最优解集,在所求出的Pareto最优解集中选择了一组最符合设计要求的解作为超声变幅杆的设计参数。为验证设计的有效性,对所设计的变幅杆进行了性能测试并对蜂窝复合材料进行了试切实验。实验结果表明:通过该优化设计方法得到的变幅杆放大倍数为7.66,较优化设计前提高了29%,且工作频率更接近于设计频率。通过仿真分析和性能实验,验证了该方法的有效性和可靠性,试切实验结果表明所设计的变幅杆满足加工要求,工艺效果好。 In order to design high performance ultrasonic horn that was usea to manufacture honeycomb composite material, a new approach was put forward to design ultrasonic horn based on multi -objective genetic algorithm. By using structural parameters of the ultrasonic horn as design variables, the resonant frequency and amplification factor as optimization goals, an optimization mathematical model of the Bezier ultrasonic horn was established. To get the parameters for calculating fitness func- tion, a finite model and dynamics analysis of ultrasonic horn were carried out by calling ANSYS soft- ware from genetic algorithms, and the Pareto-optimal solution set was obtained by genetic algorithm, then, the most suitable parameters of ultrasonic horn were chosen for horn design. At last, the per- formance test of ultrasonic horn and trial cut experiment of honeycomb composite material show that amplification factor of optimized ultrasonic horn is as 7.66, it is 29 percent higher, and the working frequency is closer to design frequency than un-optimized ultrasonic horn. Simulation and experimental results confirm the reliability and validity of the proposed design method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2016年第13期1716-1721,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51475130) 国防科工局重大专项(A3920133001)
关键词 贝塞尔超声变幅杆 多目标优化 遗传算法 蜂窝复合材料 Bezier ultrasonic horn multi-objective optimization genetic algorithm honeycomb composite material
  • 相关文献

参考文献8

  • 1Guzzo P L, Shinohara A H. A Comparative Study on Ultrasonic Machining of Hard and Brittle Materi- als[J]. Journal of the Brazilian Society of Mechani- cal Sciences and Engineering, 2004, 26 ( 1 ) : 56-61.
  • 2周胜利,姚志远,沙金.超声切割刀动力学分析和结构优化设计[J].中国机械工程,2013,24(12):1631-1635. 被引量:10
  • 3刘泽祥,康敏,陶晓明.超声电解复合加工装置的振动系统优化设计[J].中国机械工程,2014,25(6):761-765. 被引量:10
  • 4Nad M. Ultrasonic Horn Design for Ultrasonic Ma- chining Technologies[J]. Applied and Computation- al Mechanics, 2010, 4(1):79-88.
  • 5Amin S G, Ahmed M H M, Youssef H A. Com- puter-aided Design of Acoustic Horns for Ultrasonic Using Finite-element Analysis[J]. Journal of Mate- rials Processing Technology, 1995,55 (3/4) : 254- 260.
  • 6Nad M, Cicmancova L. The Effect of the Shape Pa- rameters on Modal Properties of Ultrasonic Horn Design for Ultrasonic Assisted Machining [C]// Proceedings of the International Conference of DAAAM Baltic 'Industrial Engineering'. 2012: 57- 62.
  • 7张贤明,牟瑛,王立存,陈国强,李萍,陈彬.基于NSGA-Ⅱ的多目标遗传算法通用涡旋盘的优化设计[J].中国机械工程,2012,23(13):1598-1602. 被引量:7
  • 8Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computa-tion, 2002, 6(2): 182-197.

二级参考文献35

共引文献24

同被引文献44

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部