期刊文献+

基于自适应动态球半径的k邻域搜索算法 被引量:4

k domain search algorithm based on adaptive dynamic sphere radius
下载PDF
导出
摘要 针对大规模离散点云搜索k邻域速度慢的问题,提出了一种新的搜索k邻域算法,该算法根据不同点附近点云密度给出一个合适的点的k邻域动态球半径,且动态球半径是随着所求点周围点云的密度而自适应的。从离散点云分块大小和采样密度方面对算法的可行性和效率进行了实验验证,结果显示,运用该算法求取每个点的k邻域所用的搜索时间更短,效率更高。 In order to solve the problem of large scale discrete point cloud searching for the k neighborhood slowly,it proposes a new k algorithm based on the former. In this paper the radius of the discrete point cloud of k neighborhood is adaptive with the density of the point cloud. According to the point cloud density near the point of the different point,it finds a suitable radius,analyzes the search efficiency of k neighborhood of discrete points from the aspects of the discrete point cloud block size and the sampling density,verifies the feasibility and efficiency of the algorithm.
出处 《机械设计与制造工程》 2016年第6期83-86,共4页 Machine Design and Manufacturing Engineering
关键词 k邻域 自适应 离散 采样密度 k neighborhood adaptive discrete sampling density
  • 相关文献

参考文献8

二级参考文献36

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2刘晓东,刘国荣,王颖,席延军.散乱数据点的k近邻搜索算法[J].微电子学与计算机,2006,23(4):23-26. 被引量:10
  • 3史力平.三维数据场可视化技术在逆向工程中的应用研究(硕士学位论文)[M].南京:南京航空航天大学,1999..
  • 4Mitra N J, Nguyen A. Estimation Surface Normals in Noisy Point Cloud Data [C]. The 19th ACM Symposium on Computational Geometry, San Diego, CA, 2003
  • 5Jones T R, Durand F, Desbrum M. Non-iterative, Feature Preserving Mesh Smoothing[C]. The SIGGRAPH'03 Conference, San Diego, CA, 2003
  • 6Weyrich T, Pauly M, Heinzle S, et al. Post Processing of Scanned 3d Surface Data[C]. Eurographics Symposium on Point-based Graphics, Switzerland, 2004
  • 7Amenta N, Bern M, Kamvysselis M, et al. A New Voronoi-Based Surface Reconstruction Algorithm [C]. The 25th Annual ACM Conference on Computer Graphics,Orlando, 1998
  • 8Kolahdouzan M, Shahabi C. Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases[C]. The 30th VLDB Conference, Toronto, Canada, 2004
  • 9DieKerson M T, Drysdale R L S, SacK J R. Simple Algorithms for Enumerating Inter-point Distances and Finding K Nearest Neighbors[J]. International Journal of Computational Geometry and Applications, 1992, 2(3):221-239
  • 10Sankaranarayanan J, Samet H, Varshney A. A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point-clouds[J]. Computers & Graphics, 2007, 31:157-174

共引文献177

同被引文献21

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部