摘要
本文运用单向光速各向同性的假设推导出通常熟悉的两个特定惯性系之间的最简单的洛伦兹坐标变换,并说明引入光速不变原理假定的唯一目的就是为了使得惯性系中任意地点的时钟互相对准(同步),也就是为了定义惯性系的时间坐标.在推导出通常熟知的洛伦兹变换后也给出了更一般的洛伦兹变换.此外,作为狭义相对论的检验理论介绍了相应于单向光速可变的爱德瓦兹变换、罗伯逊变换以及M-S变换,进而阐明了这些变换同洛伦兹变换之间的关系.总结起来说,洛伦兹变换和罗伯逊变换在物理上是非平庸的变换,而爱德瓦兹变换和M-S变换在物理上分别与洛伦兹变换和罗伯逊变换等价因而是平庸的.特别是,M-S变换是多余的和不必要的.
In this paper the assumption for the constancy of the one-way speed of light is used to derive the usually familiar Lorentz coordinate transformations with two specific inertial frames,and at the same time shows that the assumption of light speed invariance principle is just to make all clocks anywhere synchronization,in other words to define the time coordinates in all inertial frames.And then more general Lorentz transformations are also given.In addition,as some test theories of special relativity we introduce Edwards' transformation with variable one-way speed of light,Robertson transformation and M-S transformation,and clarify the relationship between these transforms and the Lorentz transformation.In short,Lorentz and Robertson transformations are physically untrival,and Edwards and M-S transformations are physically equivalent to Lorentz and Robertson transformations,respectively.In particular,the M-S transformation is redundant and unnecessary.
出处
《物理与工程》
2016年第3期3-8,共6页
Physics and Engineering
基金
国家自然科学基金资助(项目编号91436107)
关键词
洛伦兹坐标变换
更一般的洛伦兹变换
爱德瓦兹变换
罗伯逊变换
M-S变换
Lorentz coordinate transformations
more general Lorentz transformations
Edwards' transformation
Robertson transformation
M-S transformation