期刊文献+

利用求根MUSIC算法进行快速波达方向估计 被引量:2

Fast DoA Estimation Based on Root-MUSIC Algorithm
下载PDF
导出
摘要 针对经典波达方向(direction of arrival,Do A)估计算法复杂度高的问题,讨论了2种快速估计Do A的算法,即:传播算子求根多重信号分类(multiple signal classification,MUSIC)算法与多级维纳滤波器求根MUSIC算法.传播算子求根MUSIC算法是对协方差矩阵分块,得到传播算子构建噪声子空间,结合求根MUSIC算法估计出Do A.多级维纳滤波器不需要估计协方差矩阵,通过滤波器的前向递推,求解维纳-霍夫方程,得到信号子空间,根据正交投影原理,计算出噪声子空间与其共轭转置的乘积,结合求根MUSIC算法估计出Do A.这2种算法都不需对协方差矩阵奇异值分解和谱峰搜索,通过数学分析,复杂度明显降低. Two fast Do A algorithms were discussed to reduce complexity by classical algorithm, rootMUSIC algorithm based on propagator method and root-MUSIC algorithm using multistage Wiener filter. By propagator method,we got propagator through dividing covariance matrix, built the noise subspace, and then estimate Do A by combining root-MUSIC algorithm. By using multistage Wiener filter, we obtained the signal subspace without estimating covariance matrix,and through forward recursion of the Wiener filter,we calculated Wiener-Hoff equation,which obtain the product of the noise subspace and its conjugate transpose,and finally,according to the orthogonal projection principle,we estimated Do A by combining root-MUSIC algorithm. Neither of these two algorithms requires eigen-values decomposition of the covariance matrix or searching the peak of the spectrum,and the complexity is reduced greatly by the mathematical analysis.
作者 王新贺 周围
出处 《厦门理工学院学报》 2016年第3期57-60,共4页 Journal of Xiamen University of Technology
基金 国家高技术研究发展计划(863计划)重点项目(2009AA011302) 重庆邮电大学研究生教育创新计划重点项目(Y201019) 重庆市教委科研项目(KJ090513) 重庆市科委重点实验室专项项目
关键词 波达方向估计 多级维纳滤波器 传播算子 求根MUSIC算法 estimation of DoA multistage Wiener filter propagator root-MUSIC algorithm
  • 相关文献

参考文献9

二级参考文献64

  • 1黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 2黄磊,张林让,吴顺君.一种低复杂度的信号子空间拟合的新方法[J].电子学报,2005,33(6):982-986. 被引量:9
  • 3DIETL G, ZOLTOWSKI M D, and JOHAM M. Recursive reduced-rank adaptive equalization for wireless communications [C]. in Proc. SPIE 2001, IEEE Press, 2001, 16-27.
  • 4RICKS D and GOLDSTEIN j S. Efficient implementation of multi-stage adaptive weiner filters [C]. in Antenna Applications Symposium, Allerton Park, Illinois, IEEE Press, 2000.
  • 5HUANG L, WU S, FENG D, et al.. A low complexity method for signal subspace fitting [J]. IEE Electronics Letters, 2004, 40(14): 847-848.
  • 6WITZGALL H E. GOLDSTEIN J S, ZOLTOWSKI M D. A non-unitary extension to spectral estimation[C]. in the Ninth IEEE Digital Signal Processing Workshop Hunt, Texas, Oct. 15-18, 2000, IEEE Press, 2002, 1-6.
  • 7HONIG M L and XIAO W. Performance of reduced-rank linear interference suppression [J]. IEEE Transactions on Information Theory, 2001, 47 (5):1928-1946.
  • 8HUANG L, WU S, FENG D.et al.. Low complexity method for signal subspace fitting [J]. Electronics Letters, 2004, 40(14): 847-848.
  • 9HUANG L, ZHANG L and WU S, A new method for noise subspace estimation based on the spatial smoothing Lanczos algorithm [C], Proceedings of IEEE APS 2004, Monterey, CA, USA, 2004, IEEE Press,2004, 3689-3692.
  • 10SCHMIDT R O. A Signal Subspace Approach To Multiple Emiiter Location Spectral Estimation [D].Stanford University, Stanford, CA, Nov. 1981.

共引文献70

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部