期刊文献+

Contribution of Oxygenic Photosynthesis to Palaeo-Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea: Evidence from Black Shale Record 被引量:2

Contribution of Oxygenic Photosynthesis to Palaeo-Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea: Evidence from Black Shale Record
原文传递
导出
摘要 The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth's surface was studied to estimate the contribution of oxygenic photosynthesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Organic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary environment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18% to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×10~3 kg/km^2·yr^(-1), especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×10~3 kg/km^2·yr^(-1), with an average of ~6.03×10~3 kg/km^2·yr^(-1), which is much higher than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×10~3 kg/km^2·yr^(-1) net oxygen emitted into the Early Cambrian ocean and atmosphere, this emitted oxygen may have significantly promoted the oxygen level of the Earth's surface and diversification of metazoans. The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth's surface was studied to estimate the contribution of oxygenic photosynthesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Organic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary environment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18% to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×10~3 kg/km^2·yr^(-1), especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×10~3 kg/km^2·yr^(-1), with an average of ~6.03×10~3 kg/km^2·yr^(-1), which is much higher than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×10~3 kg/km^2·yr^(-1) net oxygen emitted into the Early Cambrian ocean and atmosphere, this emitted oxygen may have significantly promoted the oxygen level of the Earth's surface and diversification of metazoans.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2016年第2期211-224,共14页 地球科学学刊(英文版)
基金 supported by the National Natural Science Foundation of China (No. 41302023) the Doctoral Program of Higher Education (Specialized Research Fund) of China (No. 20125121130001) the Science Foundation of Education Department of Sichuan Province (No. 13ZB0190) the Karst Dynamics Laboratory, MLR and GZAR (No. KDL2011-04)
关键词 oxygenic photosynthesis organic carbon sink black shale Early Cambrian UpperYangtze shallow sea. oxygenic photosynthesis, organic carbon sink, black shale, Early Cambrian, UpperYangtze shallow sea.
  • 相关文献

参考文献17

二级参考文献263

共引文献515

同被引文献46

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部