期刊文献+

基于流形特征相似度的感知图像质量评价 被引量:5

Manifold Feature Similarity Based Perceptual Image Quality Assessment
下载PDF
导出
摘要 图像质量评价(Image quality assessment,IQA)的目标是利用设计的计算模型得到与主观评价一致的结果,而人类视觉感知特性是感知图像质量评价的关键.大量研究发现,认知流形和拓扑连续性是人类感知的基础即人类感知局限在低维流形之上.基于图像低维流形特征分析,本文提出了基于流形特征相似度(Manifold feature similarity,MFS)的全参考图像质量评价方法.首先,利用正交局部保持投影算法来模拟大脑的视觉处理过程获取最佳映射矩阵进而得到图像的低维流形特征,通过流形特征的相似度来表征两幅图像的结构差异,从而反映感知质量上的差异.其次,考虑亮度失真对人眼视觉感知的影响,通过图像块均值计算亮度相似度并用于评价图像的亮度失真;最后,结合两个相似度得到图像的客观质量评价值.在四个公开图像测试库上的实验结果表明,所提出方法与现有代表性的图像质量方法相比总体上具有更好的评价结果. Image quality assessment (IQA) aims to use computational models to measure the image quality in consistency with subjective evaluation, and human visual perception characteristics play an important role in the design of IQA metrics. From many researches on human visual perception, it has been found that the cognitive manifolds and the topological continuity can be used to describe the human visual perception, that is, human perception lies on the low-dimensional manifold. With this inspiration and manifold analysis of image, a new IQA metric called manifold feature similarity (MFS) is proposed for full-reference image quality assessment. First, orthogonal locality preserving projection algorithm is used to simulate the brain's visual processing process to obtain the best projection matrix so that low-dimensional manifold features of images are obtained. And the similarity of the manifold features is used to measure the structure differences between the two images so as to reflect differences in perceived quality and get a manifold features-based image quality index. Then, to consider the impact of brightness on human visual perception, the block mean values of the image are used to calculate the distortion of the image's brightness and design a brightness-based image quality index. The final quality score is obtained by incorporating these two indices. Extensive experiments on four large scale benchmark databases demonstrate that the proposed IQA metric works better than all state-of-the-art IQA metrics in terms of prediction accuracy.
出处 《自动化学报》 EI CSCD 北大核心 2016年第7期1113-1124,共12页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2015AA015901) 国家自然科学基金(U1301257 61271270 61311140262) 浙江省自然科学基金(LY15F010005 LY16F010002)资助~~
关键词 图像质量评价 流形特征相似度 正交局部保持投影 视觉感知 Image quality assessment (IQA), manifold feature similarity (MFS), orthogonal locality preserving projections, visual perception
  • 相关文献

参考文献27

  • 1Ma L, Deng C W, Ngan K N, Lin W S. Recent advances and challenges of visual signal quality assessment. China Communications, 2013, 10(5):62-278.
  • 2Saha A, Wu Q M J. Utilizing image scales towards totally training free blind image quality assessment. IEEE Transactions on Image Processing, 2015, 24(6):1879-1892.
  • 3王志明.无参考图像质量评价综述[J].自动化学报,2015,41(6):1062-1079. 被引量:111
  • 4Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
  • 5Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment. In:Proceedings of the 37th Conference Record of Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA:IEEE, 2003. 1398-1402.
  • 6Zhang L, Zhang D, Mou X Q. RFSIM:a feature based image quality assessment metric using Riesz transforms. In:Proceedings of the 17th International Conference on Image Process. Hong Kong, China:IEEE, 2010. 321-324.
  • 7Zhang L, Zhang D, Mou X Q, Zhang D. FSIM:a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386.
  • 8程光权,张继东,成礼智,黄金才,刘忠.基于几何结构失真模型的图像质量评价研究[J].自动化学报,2011,37(7):811-819. 被引量:8
  • 9Chandler D M, Hemami S S. VSNR:a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9):2284-2298.
  • 10Larson E C, Chandler D M. Most apparent distortion:full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 2010, 19(1):011006.

二级参考文献23

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2Sheikh H R, Sabir M F, Bovik A C. A statistical evalu- ation of recent full reference image quality assessment al- gorithms. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451.
  • 3Cheng G, Cheng L. Reduced reference image quality assess- ment based on dual derivative priors. Electronics Letters, 2009, 45(18): 937-939.
  • 4Suresh S, Babu R V, Kim H J. No-reference image quality assessment using modified extreme learning machine classi- tier. Applied Soft Computing, 2009, 9(2): 541-552.
  • 5Heeger D J, Teo T C. A model of perceptual image fi- delity. In: Proceedings of the IEEE International Confer- ence on Image Processing. Washington D.C., USA: IEEE, 1995. 343-345.
  • 6Bradley A P. A wavelet visible difference predictor. IEEE Transactions on Image Processing, 1999, 8(5): 717-730.
  • 7Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural simi- larity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 8Wang Z, Bovik A C. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117.
  • 9Chang J, Alain B, Ostromoukhov V. Structure-aware er- ror diffusion. ACM Transactions on Graphics, 2009, 28(5): 162.1-162.8.
  • 10Sheikh H R, Bovik A C. Image information arid visual qual- ity. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.

共引文献117

同被引文献50

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部