期刊文献+

Three New(2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

Three New(2+1)-dimensional Integrable Systems and Some Related Darboux Transformations
原文传递
导出
摘要 We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1,then under the framework of zero curvature equations we generate two(2+1)-dimensional integrable hierarchies, including the(2+1)-dimensional shallow water wave(SWW) hierarchy and the(2+1)-dimensional Kaup–Newell(KN)hierarchy. Through reduction of the(2+1)-dimensional hierarchies, we get a(2+1)-dimensional SWW equation and a(2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the(2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the(2+1)-dimensional KN equation could be deduced. Finally,with the help of the spatial spectral matrix of SWW hierarchy, we generate a(2+1) heat equation and a(2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang–Mills equations.
作者 郭秀荣
机构地区 Basic Courses
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第6期735-742,共8页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11371361 the Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2012AQ011,ZR2013AL016,ZR2015EM042 National Social Science Foundation of China under Grant No.13BJY026 the Development of Science and Technology Project under Grant No.2015NS1048 A Project of Shandong Province Higher Educational Science and Technology Program under Grant No.J14LI58
关键词 (2+1)-dimensional equation Lie algebra Darboux transformation Darboux变换 可积系统 零曲率方程 广义逆算子 loop代数 层次结构 李代数 交换子
  • 相关文献

参考文献22

  • 1L.A. Dichey, Soliton Equations and Hamiltonian Systems, World Scientific Publishing, Singapore (2003).
  • 2C.Z. Tu, J. Math. Phys. 30 (1989) 330.
  • 3G.Z.Y, Adv. Appl. Math. 14 (1993) 416.
  • 4G.Z. Tu, Discrete Math. 123 (1993) 121.
  • 5R. Hirota, The Direct Method in Soliton Theroy, Cam- bridge University Press, London (2004).
  • 6J.P. Wang, J. Nonlinear Math. Phys. 9 (2002) 213.
  • 7C. Athorne and I.Y. Dorfman, J. Math. Phys. 34 (1993) 3507.
  • 8P.M. Santini and A.S. Fokas, Commun. Math. Phys. 115 (1988) 375.
  • 9A.S. Fokas and G.Z. Tu, An Algebraic Recursion Scheme for KP and DS Hierarchies, Preprint, Clarkson Univer- sity, New York (1990).
  • 10G.Z. Tu, R.I. Andrushkiw, and X.C. Huang, J. Math. Phys. 32 (1991) 1900.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部