期刊文献+

粒子下落末速度和粒子谱形参数对降水模拟影响的数值研究 被引量:3

Impacts of Terminal Velocity and Drop Size Distribution Shape on the Numerical Simulation of Precipitation
下载PDF
导出
摘要 数值模式能否准确地对降水过程进行预报,很大程度上取决于云微物理参数化方案能否准确地对云内的物理过程进行描述。目前显式云微物理参数化方案中对粒子的下落速度、不同直径粒子的浓度分布两方面的微物理特征,分别使用质量加权下落末速度和粒子谱进行描述。因此,参数化方案中不同的描述方式直接影响数值模式对降水过程的模拟结果。本文使用耦合了一种新的体积水法双参数云微物理参数化方案的WRF模式(Weather Research and Forecasting Model)3.5.1版本对发生在2013年5月8日的一次华南强降水过程进行模拟,分别对Ferrier和Locatelli两种质量加权下落末速度计算方法,以及常数参数和根据东亚地区实际观测结果改进的谱形参数两种粒子谱形参数设置的模拟结果进行分析,并对他们的四组参数组合预报结果进行评估。结果表明:(1)质量加权末速度的改变对降水强度有一定影响;(2)粒子谱形参数对模拟降水的强度和发展都有明显的影响,且谱形参数对本次降水模拟的影响强于下落末速度的影响;(3)Ferrier质量加权末速度和改进的谱形参数的组合试验组对降水的预报效果,相对其他三组试验有较明显的优势。 The accuracy of numerical weather prediction is mainly affected by the description of physical processes in cloud microphysics schemes. In current microphysical parameterizations the fall speed and diameter-concentration distribution of hydrometeors are described using the mass-weighted terminal velocity and drop size distribution shape parameter. Therefore,the description in different schemes directly influences numerical weather prediction. In this study, the Weather Research and Forecasting (WRF) model (version 3.5.1), coupled with a new bulk two-moment microphysics scheme, was used to simulate a severe precipitation event that occurred in South China on 8 May 2013. Two descriptions of terminal velocity, two descriptions of the size distribution parameter, and four combinations of each, were evaluated and analyzed. The results were as follows: (1) Changes in snowfall terminal velocity had certain impacts on precipitation intensity; (2) Changes in the size distribution shape parameter generated more obvious impacts in terms of both the intensity and development of precipitation; (3) Combining the Ferrier mass-weighted terminal velocity and the improved size distribution shape parameter, using long-term observations in East Asia, showed clear advantages compared with three other sensitivity runs.
出处 《大气科学》 CSCD 北大核心 2016年第4期841-852,共12页 Chinese Journal of Atmospheric Sciences
基金 国家自然科学基金项目91437221 科技部公益性行业(气象)科研专项项目GYHY201206039、GYHY201006014 国家重点基础研究发展计划(973计划)项目2012CB417204~~
关键词 数值模拟 下落末速度 粒子谱形参数 Numerical simulation, Terminal velocity, Drop size distribution
  • 相关文献

参考文献30

  • 1Baker M B. 1997. Cloud mierophysies and climate [J]. Science, 276 (5315): 1072-1078, doi: 10.1126/science.276.5315.1072.
  • 2Bennetts D A, Rawlins F. 1981. Parametrization of the ice-phase in a model of mid-latitude cumulonimbus convection and its influence on the simulation of cloud development [J]. Quart. J. Roy. Meteor. Sot., 107 (453): 477-502, doi:10.1002/qj.49710745302.
  • 3Brandes E A, Ikeda K, Zhang G, et al. 2007. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer [J]. Journal of applied meteorology and climatology, 46 (5): 634-650, doi:10.1175/JAM2489.1.
  • 4Franklin C N, Holland G J, May P T. 2005. Sensitivity of tropical cyclone rainbands to ice-phase microphysics [J]. Mort. Wea. Rev., 133 (8): 2473-2493, doi: 10.1175/MWR2989.1.
  • 5Ferrier S B. 1994. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description [J]. J. Atmos. Sci., 51 (2): 249-280, doi: 10.1175/1520-0469( 1994)051 <0249 :ADMMPF>2.0.CO;2.
  • 6胡志晋,严采蘩.1986.层状云微物理过程的数值模拟(一卜一微物理模式[J].气象科学研究院院刊,1(1):37-52.
  • 7Hong S Y, Juang H M H, Zhao Q . 1998. Implementation of prognostic cloud scheme for a regional spectral model [J]. Mon. Wea. Rev., 126 (10): 2621-2639, doi: 10.1175/1520-0493 (1998) 126<2621 :IOPC SF>2.0.CO;2.
  • 8Jankov I, Gallus Jr W A, Segal M, et al. 2005. The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall [J]. Wea. Forecasting, 20 (6): 1048-1060, doi: 10.1175/WAF888.1.
  • 9Lim K S S, Hong S Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models [J]. Mon. Wea. Rev., 138 (5): 1587-1612, doi: 10.1175/2009MWR2968.1.
  • 10Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model [J]. J. Climate Appl. Meteor., 22 (6): 1065-1092, doi: 10.1175/1520-0450(1983 )022< 1065 :BPOTSF>2.0.CO;2.

二级参考文献222

共引文献172

同被引文献32

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部