期刊文献+

锂离子电池剩余寿命在线预测 被引量:5

Online Prediction of Remaining Useful Lifetime for Lithium-ion Batteries
下载PDF
导出
摘要 针对现有研究中的不足,提出一种改进的相关向量机模型对锂离子电池的剩余寿命进行实时预测。首先,利用锂离子电池容量数据和相空间重构技术,构造模型的训练集。其次,在传统的单核相关向量机模型上做出改进,采用多核核函数,从而提高相关向量机模型的泛化能力和剩余寿命预测的精度。此外,利用粒子群优化算法,自适应的确定多核相关向量机模型的最优参数组合。实验结果表明,相比单核相关向量机模型,本文提出的多核相关向量机模型能够更为准确的对锂离子电池的剩余寿命进行预测。 Considering the existing research gap,we propose a modified Relevance Vector Machine( RVM) to make an online prediction of RUL. Firstly,the training dataset with lithium-ion batteries' capacity data and phase space reconstruction technique is constructed. Then,the traditional RVM by adopting a multi-kernel function is modified in order to improve the accuracy and generalizability of the original RVM model. In addition,the particle swarm optimization algorithm is employed to adaptively search the optimal parameter combination of the multi-kernel RVM. The experimental results show that the present model is capable to predict the online RUL of lithium-ion battery more accurate than that of single kernel RVM.
出处 《机械科学与技术》 CSCD 北大核心 2016年第8期1286-1290,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金面上项目(71371182)资助
关键词 锂离子电池 多核相关向量机 粒子群优化 相空间重构 剩余寿命 lithium-ion battery multi-kernel relevance vector machine particle swarm optimization phase space reconstruction remaining useful lifetime
  • 相关文献

参考文献1

二级参考文献7

  • 1Stefania Tronci.etc.Reconstruction of chaotic time series by neural models:a case study. Neuro computing . 2003
  • 2B.J.Chen.Load forecasting using Support vector machines:A study on EUNITE Competition 2001. . 2001
  • 3Casdgli M.Nonlinear prediction of chaotic time series. Physica D Nonlinear Phenomena . 1989
  • 4Kugiumtzis D,Lingjarde O C,Christophersen N.Regularized Local Linear Prediction of Chaotic Time Series. Physica D Nonlinear Phenomena . 1998
  • 5Eckmann J P,Kamphorst S O,Ruelle D.Lyapunov Exponents from Time Series. Physical Review A Atomic, Molecular, and Optical Physics . 1986
  • 6Mukherjee S,Osuna E,Girosi F.Nonlinear prediction of chaotic time series using support vector machines. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing . 1997
  • 7Cao Lijuan,Gu Qingming.Dynamic support vector machines for non-stationary time series forecasting. Intelligent Data Analysis . 2002

共引文献1

同被引文献34

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部