期刊文献+

基于向量自回归模型的微博隐式话题流行度预测 被引量:1

Vector Auto-regression Model Based Microblog Hidden Topic Popularity Prediction
下载PDF
导出
摘要 现有话题流行度预测方法仅基于话题本身的特征进行流行度预测,未考虑不同话题间的相关性.然而在微博上下文不同的话题之间存在一定的相关性,特别是在同一个事件的不同话题之间.因此,文中利用动态话题模型探测微博中的隐式话题及其流行度时间序列,通过Jensen-Shannon散度和皮尔逊相关系数分别分析话题间的内容和时序相关度,然后在预测模型中引入话题时序相关性,提出基于向量自回归模型的微博隐式话题流行度预测算法.通过在真实微博数据上的实验分析可知,相比未考虑话题相关性的算法,文中算法具有更高的预测准确率和更好的模型拟合效果. The existing topic popularity prediction methods predict the topic popularity just based on the features of topic and the correlations between different topics are not taken into account. However, there are correlations among different topics in microblog contexts, especially for the topics of the same event. Aiming at this problem, dynamic topic model is firstly employed to detect the hidden topics and their popularity time series from microblogs in this paper. Then, the Jensen-Shannon divergence and Pearson's correlation coefficient are computed to investigate the correlations among topic contents and among topic time-series, respectively. Thus, the motivation of introducing topics correlation is revealed. Finally, a vector auto-regressive (VAR) model based Microblog hidden topic popularity prediction algorithm is proposed by introducing correlations among different topic time-series in model training. Experiments are conducted on the real data. Experimental results show that the proposed algorithm performs better in prediction accuracy and model fitting than algorithms without consideration of correlations among different topics.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第7期616-624,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61402123 61300222 61173170) 国家计算机网络应急技术处理协调中心青年基金项目(No.2015QN-006 2014QN01) 北京科技计划项目(No.Z161100000216128) 软件工程国家重点实验室开放基金项目(No.SKLSE2012-09-11)资助~~
关键词 流行度预测 向量自回归(VAR) 微博隐式话题 时序相关度 动态话题模型(DTM) Popularity Prediction, Vector Auto-regressive (VAR), Microblog Hidden Topic, Topic Correlation, Dynamic Topic Model (DTM)
  • 相关文献

参考文献1

二级参考文献14

  • 1Dejin Zhao, Mary B, Rosson. How and why people twitter: the role that micro-blogging plays in informal communication at work[ C ]//Proceedings of the ACM 2009 international conference on Supporting group work. 2009:243-252.
  • 2Boyd d, Golder S, Lotan, et al. Tweet, Retweet: Conversational Aspects of Retweeting on Twitter[ EB/OL]. [2010-04-22]. http ://research. microsoft, com/pubs/135165/TweetTweet-Retweet. 2010.
  • 3Zarrella D. Science of Retweets[ EB/OL]. [ 2009-08-23 ]. http://danzarrella, com/the-science-of-retweets-report, html.
  • 4Krishnamurthy B, Gill P, Arlitt M. A few chirps about twitter[ EB/OL]. [2008-10-28]. http://dl, acre. org/citation, cfm? id = 1397741.
  • 5Kwak H, Lee C, Park H, et al. What is twitter, a social network or a news media [ EB/OL]. [2010-02-24]. http://dl. aem. org/citation, cfm? id = 1772751.
  • 6Cha M, Haddadi H, Benevenuto F, et al. Measuring user influence on twitter: The million follower fallacy[ C]//4th Int'l AAAI Conference on Weblogs and Social Media. 2010:113-123.
  • 7Weng J, Lim E P, Jiang J,et al. Twitterrank : finding topic-sensitive influential twitters[ EB/OL]. [ 2010-06-28 ] http ://dl. acm. org/citation, cfm? id = 1718520.
  • 8Lerman K, Ghosh R. Information contagion: an empirical study of the spread of news on digg and twitter social networks[ EB/ OL]. [ 2010-08-12 ]. http ://arxiv. org/abs/1003. 2664.
  • 9Eytan Bakshy, Jake M, Hofman. Identifying ' Influencers' on Twitter [ EB/OL ]. [ 2011-01-12]. http://kdpaine, blogs. com/files/twitterinfluencershofmanetal. 2011.
  • 10Szabo G, Huberman B A. Predicting the popularity of online content[ EB/OL]. [ 2008-05-11 ]. http ://dl. acm. org/citation. cfm? id = 1787254, 2008.

共引文献6

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部