期刊文献+

The shallow meridional overturning circulation in the South China Sea and the related internal water movement 被引量:1

The shallow meridional overturning circulation in the South China Sea and the related internal water movement
下载PDF
导出
摘要 The structure of the annual-mean shallow meridional overturning circulation (SMOC) in the South China Sea (SCS) and the related water movement are investigated, using simple ocean data assimilation (SODA) outputs. The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale, which consists of downwelling in the northern SCS, a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow, with a strength of about 1x 108 ma/s. The formation mechanisms of its branches are studied separately. The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m. The annual-mean Ekman transport across 18°N is about 1.2×106 m^3/s. An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework. An annual subduction rate of about 0.66×106 ma/s is obtained between 17° and 20°N, of which 87% is due to vertical pumping and 13% is due to lateral induction. The subduction rate implies that the subdution contributes significantly to the downwelling branch. The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 1 I^N within the western boundary current before returning northward. The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents. Significant upwelling mainly occurs off the Vietnam coast in the southern SCS. An upper bound for the annual-mean net upwelfing rate between 10° and 15°N is 0.7×108 ma/s, of which a large portion is contributed by summer upwelling, with both the alongshore component of the southwest wind and its offshore increase causing great upwelling. The structure of the annual-mean shallow meridional overturning circulation (SMOC) in the South China Sea (SCS) and the related water movement are investigated, using simple ocean data assimilation (SODA) outputs. The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale, which consists of downwelling in the northern SCS, a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow, with a strength of about 1x 108 ma/s. The formation mechanisms of its branches are studied separately. The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m. The annual-mean Ekman transport across 18°N is about 1.2×106 m^3/s. An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework. An annual subduction rate of about 0.66×106 ma/s is obtained between 17° and 20°N, of which 87% is due to vertical pumping and 13% is due to lateral induction. The subduction rate implies that the subdution contributes significantly to the downwelling branch. The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 1 I^N within the western boundary current before returning northward. The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents. Significant upwelling mainly occurs off the Vietnam coast in the southern SCS. An upper bound for the annual-mean net upwelfing rate between 10° and 15°N is 0.7×108 ma/s, of which a large portion is contributed by summer upwelling, with both the alongshore component of the southwest wind and its offshore increase causing great upwelling.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期1-7,共7页 海洋学报(英文版)
基金 The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010302 the National Natural Science Foundation of China under contract Nos 41276011,41521091 and U1406401 the Research Project of Ministry of Education of China under contract No.113041A
关键词 South China Sea shallow meridional overturning circulation Ekman transport SUBDUCTION UPWELLING South China Sea, shallow meridional overturning circulation, Ekman transport, subduction, upwelling
  • 相关文献

参考文献3

二级参考文献33

共引文献37

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部