期刊文献+

量子通信系统中基于FPGA的偏振控制 被引量:6

Polarization controlling by FPGA for quantum security communication
下载PDF
导出
摘要 由于光子偏振态在长距离光纤中无法保持稳定,因此以偏振编码为基础的量子保密通信系统需要进行偏振控制以保持成码的正确性。在实用化量子保密通信的研究中,用现场可编程门阵列(field programmable gate array,FPGA)替代计算机作为系统的控制核心已经成为一个重要的研究方向,这种方案具有高效率、高集成度等优势。针对这种情况,提出了利用FPGA实现单光子偏振控制的方案,经实验演示证明了这套方案的有效性和稳定性,90%的成码耗时远高于计算机控制核心时的65%的最大值,相同编解码、纠错方式情况下,拥有更大的成码耗时便可以得到更高效的密钥生成。整个控制过程中FPGA和单光子探测以及电动偏振控制器(electric polarization controller,EPC)电压调节机制可以统一集成,实现偏振控制的小型化。 The polarization of photons in the optical fiber cannot maintain stable for long distance.Therefore,polarization control is necessary for the fiber-based polarization-encoded quantum security communication system to guarantee correct key generation.With the development of the practical quantum communication,field programmable gate array(FPGA)has played an important role in the information processing and system operation due to its advantage of high efficiency,high integration and high security.A polarization control scheme and polarization initialization is presented and applied to the BB84 protocol based on FPGA to stabilize photon polarization in the fiber.90%of a code-consuming is higher than 65%of the maximum value in the computer control center.With the same codec and error correction mode,if who has more time consuming for coding,then he will get more efficient key generation.FPGA,single photon detection,and electric polarization controller(EPC)mechanism can be unified and integrated to achieve the miniaturization of quantum polarization controlling.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第8期1917-1921,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61179029)资助课题
关键词 量子通信 现场可编程门阵列 偏振控制 quantum security communication field programmable gate array(FPGA) polarization controlling
  • 相关文献

参考文献17

  • 1Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical computer science, 2014, 560: 7-11.
  • 2Gobby C, Yuan Z L, Shields A J. Quantum key distribution o- ver 122 km of standard telecom fiber[J]. Applied Physics Let- ters, 2004, 84(19): 3762-3764.
  • 3Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography[J]. Optics letters, 2005, 30 (19) : 2632 - 2634.
  • 4Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and inter city quantum communication network[J].Optics El'press, 2010, 18(26):27217-27225.
  • 5Tang X, Ma L, Mink A, et al. Experimental study of high speed polarization-coding quantum key distribution with sifted key rates over Mbit/s[J]. Optics E.rpress, 2006, 14(6) : 2062 - 2070.
  • 6Bienfang J, Gross A, Mink A, et al. Quantum key distributionwith 1. 25 Gbps clock synchronization [J]. Optics Express, 2004, 12(9) : 2011 - 2016.
  • 7Xavier G B, Walenta N, De Faria G V, et al. Experimental po- larization encoded quantum key distribution over optical fibres with real-time continuous hirefringenee eompensation[J]. New Journal of Physics, 2009, 11(4) : 045015.
  • 8Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization enco- ding[J]. Physical Review Letters, 2007, 98(1) : 010505.
  • 9Ulrich R. Polarization stabilization on single-mode fiber[J]. Ap- plied Physics Letters, 1979, 35(11) : 840 - 842.
  • 10Chen J, Wu G, Li Y, et al. Active polarization stabilization in optical fibers suitable for quantum key distribution[J]. Optics ezpress, 2007, 15(26) : 17928- 17936.

二级参考文献59

  • 1刘德明,黄德修,聂刚.全光学偏振自动控制器[J].光学学报,1993,13(12):1120-1123. 被引量:3
  • 2邵进,吴令安.用单光子偏振态的量子密码通信实验[J].量子光学学报,1995,1(1):41-44. 被引量:18
  • 3Zhou Z G 1981 Ferrite Magnetism Materials (Beijing: SciencePress) pp5--12 (in Chinese).
  • 4Yang Q H, Zhang H W, Li L Y, Wen Q Y, Zha J 2008 Chin. Phys. Lett. 25 3957.
  • 5Yang Q H, Zhang H W, Li L Y, Wen Q Y, Liu Y L, Syvorotka I M, Syvorotka I I 2009 Chin. Phys. Lett. 26 047401.
  • 6Pozar D M 1998 Microwave Engineering (2nd ed)( New York: Wiley) p705.
  • 7Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Buttner.R 2002 Appl. Phys. Lett. 80 154.
  • 8YangY P, Zhang Z W, Shi Y L, Feng S, Wang W Z 2010 Chin. Phys. B 19 043302.
  • 9Awad M M, Cheville R A 2005 Appl. Phys. Lett. 86 221107.
  • 10Woolard D L, Brown E R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722.

共引文献17

同被引文献40

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部