期刊文献+

下肢助力外骨骼机器人自适应阻抗控制研究 被引量:4

Learning-Based Adaptive Impedance Control for a Human-Powered Augmentation Lower Exoskeleton
下载PDF
导出
摘要 当前用于人体运动增强的下肢助力外骨骼系统获得越来越多的关注。获取高精度跟随控制是下肢助力外骨骼机器人研制的主要挑战。针对当前基于位置的控制算法需要复杂的外骨骼动力学模型的问题,该文提出了基于增强学习的变参数阻抗控制算法。首先介绍了HUALEX助力外骨骼系统并对HUALEX建立简单动力学模型。基于此,提出一种基于增强学习的自适应阻抗控制算法,验证了阻抗参数对控制效果的影响,并通过仿真实验验证了该算法的有效性。 A learning-based adaptive impedance control algorithm for a human-powered augmentation lower exoskeleton (HUALEX) is presented. The HUALEX system architecture is introduced first, which is divided into three parts including the mechanical subsystems, the sensing subsystem and the control subsystem. By using impedance control method, the inverse dynamics model of HUALEX is established and the control effect of impedance parameters is studied. And then, a reinforcement learning-based adaptive impedance control algorithm, including the reinforcement learning, PI2 (policy improvement with path integrals) learning algorithm and adaptive impedance control, is proposed. The effectiveness of the algorithm is verified simulation experiment.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第4期689-695,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然基金(71201017) 中央高校基本科研业务费(ZYGX2012J101)
关键词 自适应阻抗控制 阻抗控制 动力学模型 下肢助力外骨骼 增强学习 adaptive impedance control dynamics model impedance control human-powered augmentation lower exoskeleton reinforcement learning
  • 相关文献

参考文献23

  • 1KAZEROONI H. Human augmentation and exoskeleton systems in Berkeley[J]. International Journal of Humanoid Robotics, 2007, 4(3): 575-605.
  • 2KAZEROONI H, STEGER R. That which does not stabilize, will only make us stronger[C]//IEEE International Conference on Rehabilitation Robotics. IS.1.]: IEEE, 2007: 373-395.
  • 3GHAN J, KAZEROONI H. System identification for the Berkeley lower extremity exoskeleton (BLEEX)[C]// Proceedings of the 2006 IEEE International Conference on Robotices and Automation. Orlando, Florida: IEEE, 2006.
  • 4KAWAMOTO H, SANKAI "Y. Power assist system HAL-3 for gait disorder person[J]. Lecture Notes in Computer Science, 2002, 2398: 196-203.
  • 5SANKAI Y. HAL: Hybrid assistive limb based on cybernics[J]. Springer Tracts in Advanced Robotics, 2007, 66: 25-34.
  • 6KAWAMOTO H, SANKAI Y. Power assist method based on phase sequence driven by interaction between human and robot suit[C]//IEEE International Workshop on Robot and Human Interactive Communication. [S.1.]: IEEE, 2004: 491-496.
  • 7陈峰.可穿戴型助力机器人技术研究[D].合肥:中国科学技术大学,2006.
  • 8HUANG R, CHENG H, ZHENG H, et al. Study on master-slave control strategy of lower extremity exoskeleton robot[C]//Intelligent Control and Automation. [S.1.]: IEEE, 2014: 1362-1365.
  • 9HUANG R, CHENG H, CHEN Q, et al. Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems(RIOS). IS.1.]: IEEE, 2015.
  • 10KAZEROONI H, RACINE J L, HUANG L, et al. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)[J]. International Journal of Robotics Research, 2006, 25(5-6): 561-573.

同被引文献15

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部