期刊文献+

深空探测器约束简化与任务规划方法研究 被引量:20

Research on Constraint Simplification and Mission Planning Method for Deep Space Explorer
下载PDF
导出
摘要 针对深空探测器现有的任务规划方法在处理系统间复杂约束时存在的约束复杂度高、实时响应能力差、计算效率低等问题,提出一种新的约束简化方法和启发式连续任务规划方法。首先,在时间线规划模型中根据两两子系统间的实时状态关系定义启发式因子,并利用该因子在规划周期内的取值建立子系统间时间线临时从属关系,从而合理地降低规划过程中的约束复杂程度;然后,在规划算法中采用时间线状态扩展策略,根据时间线临时从属关系对各子系统间的状态进行横向和纵向扩展,从而实现对目标任务规划进行快速排序。仿真结果表明由启发式因子建立的时间线临时从属关系有效简化了任务规划过程中的时间约束和资源约束、提高了任务规划的效率和灵活性。 In this paper, a heuristic mission planning method is proposed to deal with the problems of high complexity, real-time response capability and low computational efficiency in the traditional mission planning algorithms for deep space explorer. Firstly, a new constraint simplification algorithm is proposed by use of a heuristic factor derived from the real-time state relationship between the two-two subsystems in the timeline planning model. By using the value of the factor, the temporary subordinate relationships of subsystems are established during the planning period, which can significantly reduce the complexity of constraints in the planning process. Secondly, the timeline state expansion strategy is adopted in the planning algorithm. These expansions are conducted in single timeline and between timelines according to the temporary subordinate relationship, thus obtaining the mission sequence quickly. The simulation results verify the effectiveness of the proposed method, and improve the efficiency and flexibility of the mission planning.
作者 王晓晖 李爽
出处 《宇航学报》 EI CAS CSCD 北大核心 2016年第7期768-774,共7页 Journal of Astronautics
基金 国家自然科学基金(61273051) 上海航天科技创新基金(SAST2015036) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20151501)
关键词 深空探测 任务规划 时间线 启发式 约束简化 Mission planning Constraint simplification Timeline Heuristic Deep space exploration
  • 相关文献

参考文献18

  • 1彭婷.基于修复策略的深空探测器自主任务规划方法研究[D].北京:北京理工大学,2012.
  • 2代树武,孙辉先.航天器自主运行技术的进展[J].宇航学报,2003,24(1):17-22. 被引量:27
  • 3R-Moreno M D, James K, Amedeo C. Innovative ai technologies for future ESA missions [ C]. 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, November 2008.
  • 4Ghallab M, Nau D, Traverso P. Automated planning: theory and practice [ M ]. Burlington : Morgan Kaufmann, 2004.
  • 5Malik G, Howe A, Knoblock C, et al. PDDL-the planning domain definition language, version 1.2 [ R ]. CVC TR - 98 - 003/DCS TR- 1165, Yale Center for Computational Vision and Control, 1998.
  • 6Gerevini A, Serina I. Fast planning through greedy action graphs [C]. The 16th National Conference of the American Association for Artificial Intelligence ( AAAI - 99 ), Orlando, Florida, 1999.
  • 7赵凡宇,徐瑞,崔平远.启发式深空探测器任务规划方法[J].宇航学报,2015,36(5):496-503. 被引量:16
  • 8崔平远,徐瑞,朱圣英,赵凡宇.深空探测器自主技术发展现状与趋势[J].航空学报,2014,35(1):13-28. 被引量:57
  • 9Chien S A, Johnston M, Frank J, et al. A generalized timeline representation, services, and interface for automating space mission operations[ C ]. The 12th International Conference on Space Operations, Stockholm, Sweden, June 11 -15, 2012.
  • 10Muscettola N, Nayak P, Pell B, et al. Remote agent: to boldly go where no AI system has gone before [ J ]. Artificial Intelligence, 1998, 103(1/2):5-47.

二级参考文献162

  • 1孙雅茹,王凤阳,韩月平,刘泳.卫星自主运行任务调度问题的优化算法[J].计算机工程与设计,2005,26(2):461-464. 被引量:5
  • 2Potter W,Gasch J.A photo album of earth scheduling daily landsat 7 activities[C]// Proceedings of Space Ops 98.Tokyo,Japan,1998.
  • 3Lemaitre M,Verfaillie C,Jouhaud F,el al.Selecting and scheduling observations of agile satellites[J].Aerospace Science and Technology,2002,7:367 -381.
  • 4Chamoun J P,Kim J,Beech T,et al.Mission planning and scheduling for the lunar reconnaissance orbiter[C]// Proceedings of Space Ops 2008,Heidelberg,Germany,2008.
  • 5Lin W C,Liao D Y,C.Liu Y,et al.Daily imaging scheduling of an Earth observation satellite[J].IEEE Transactions on System,Man,and Cybernetics,2005,35(2).213 -223.
  • 6Johnston M D.Deep space network scheduling using multi-objective optimization with uncertainty[C]// Proceedings of Space Ops,Heidelberg,Germany,2008.
  • 7Vieira C E,Herrmann J W,Lin E.Rescheduling manufacturing systems:a framework of strategies,policies,and methods[J].Journal of Scheduling,2003,6(1):39 -62.
  • 8Mattfeld D C,Bierwirth C.An efficient genetic algorithm for job shop scheduling with tardiness objectives[J].European Journal of Operational Research,2004,155(2):616 -630.
  • 9[1]Michael M Marshall.Goals for air force autonomous space-craft[R].AD-A105488,1981
  • 10[2]Golden C J. AI applications for space support and satellite autonomy[R].AIAA87-1682,1987

共引文献101

同被引文献164

引证文献20

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部