期刊文献+

探讨256iCT低剂量扫描在肺部小结节鉴别诊断中的应用 被引量:5

Application of 256iCT low-dose scan in differential diagnosis of Small pulmonary nodules
下载PDF
导出
摘要 目的 观察低剂量与常规剂量CT扫描对肺部小结节病灶显示的差异,探讨在肺部小结节鉴别诊断的早期肺癌筛查中低剂量CT应用的可能性。方法 选取应用常规剂量(120 k V/100 m As;滤波反投影法重建图像,FBP)检测出肺小结节患者46例,经患者知情同意3~24个月后隔期复查时采用低剂量参数(120 k V/50、30 m As;迭代算法重建图像,IR)扫描,分别对常规剂量组和低剂量组进行主观图像分析、评分,以及客观图像质量及辐射剂量比较。结果 两组图像均能清晰显示肺结节数目及形态特征,均能满足临床诊断要求,图像的CT值、SD值、SNR、CNR差异无统计学意义(P〉0.05),两组图像质量没有区别;而两组在CTDIvol、DLP、ED方面比较,差异有统计学意义(P〈0.05),低剂量组能明显降低患者所受辐射剂量。结论 低剂量扫描方案可以在肺部小结节鉴别诊断中大幅度降低患者所受辐射剂量,在早期肺癌筛查中值得临床推广。 Objective To observe the displayed difference between low-dose and conventional-dose CT scan on small pulmonary nodules, and to discuss the possibility of low-dose CT in application of early screening of lung cancer with small pulmonary nodules. Methods 46 patients with small pulmonary nodules detected by conventional dose(120 kV/100 m As; filtered back projection reconstructed image, FBP) were selected and were given low-dose(120 kV/50, 30 m As;iterative algorithm reconstructed image, IR) CT scan on regular reexaminations from 3 to 24 months after the first scan.The subjective images were analyzed and scored in both conventional dose group and low dose group, and the objective quality of image and radiation dose were compared. Results Images of two groups can both clearly display the numbers and features of pulmonary nodules, meeting the need of clinical diagnosis. There were no significant differences in CT value, SD value, SNR, or CNR between two groups(P0.05). There were significant differences in CTDIvol, DLP, and ED(P0.05), and the radiation dose was significantly lower in the low dose group. Conclusion Low-dose CT scan can significantly reduce the radiation dose in the differential diagnosis of patients with small pulmonary nodules, thus is worthy to be promoted in early screening of lung cancer.
出处 《中国现代医生》 2016年第19期109-112,共4页 China Modern Doctor
基金 浙江省科技厅项目(2013C03044-3)
关键词 体层摄影术 X线计算机 辐射剂量 肺结节 CT X-ray computer Radiation dose Pulmonary nodule
  • 相关文献

参考文献21

  • 1中华人民共和国卫生部.2010中国卫生统计年鉴[J].北京:中华人民共和同卫生部.2010.
  • 2Nahorecki A, Chabowski M, Kuzniar T, et al. Low-dose computer tomography as a screening tool for lung cancer in a high risk population[J]. Advances in Experimental Medicine and Biology, 2015,85 ( 2 ) : 31-37.
  • 3王颖,梁明柱,赵虹,柳学国.低剂量螺旋CT胸部健康体检价值的探讨[J].中国中西医结合影像学杂志,2010,8(5):411-414. 被引量:6
  • 4Beaumont H,Souchet S, Labatte JM, et al. Changes of lung tumor volume on CT-prediction of the reliability of assess- ments[J]. Cancer Imaging, 2015, ( 15 ) : 17.
  • 5魏然,李万湖,申洪明,崔永春.低剂量与常规剂量螺旋CT显示磨玻璃密度结节的对照研究[J].医学影像学杂志,2015,25(3):452-454. 被引量:30
  • 6Stefan Diederich. The pulmonary nodule:Change of parad- igm[J]. Cancer Imaging,2015, (3): 117.
  • 7王晶晶,高妮,梁志刚,吕平欣,郭秀花.肺结节患者影像学特征分析[J].北京生物医学工程,2015,34(1):85-89. 被引量:9
  • 8Li F,Liu SY. Lung cancer screening using low dose CT: Screening population and positive results definition[J]. Tho- racic Disease,2015,7(9) :E338-E340.
  • 9Manji F,Wang J,Norman G,et al. Comparison of dual en- ergy subtraction chest radiography and t raditional chest X-rays in the detection of pulmonary nodules[J]. Quant Imaging Med Surg,2016,6(1):1-5.
  • 10Digumarthy SR,Kovacina B,Otrakji A,et al. Percuta- neous CT guided lung biopsy in patients with pulmonary hypertension[J]. Assessment of Complications, 2016,85 (2) :466-471.

二级参考文献55

  • 1张超,冯莉莉,刘海军.低剂量与常规剂量CT显示肺结节的临床对照研究[J].医学影像学杂志,2005,15(6):459-462. 被引量:6
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA CancerJClin, 2011,61(2):69-90.
  • 4Wu HF, Sun T, Guo XH, et al. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography [J]. J Digit Imaging, 2013, 26(4) :797-802.
  • 5Wang H, Guo XH, Jia ZW, et al. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image [ J ]. European Journal of Radiology, 2010,74( 1 ) :124-129.
  • 6Wang JJ, Wu HF, Sun T, et al. Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters [ J ]. Asian Pacific Journal of Cancer Prevention, 2013,14(10) :6019-6023.
  • 7汪雷.27例周围型小肺癌的CT影像学诊断价值探讨[J].医学信息,2013(17):525.
  • 8Swensen SJ, Silverstein MD, llstrup DM, et al. The probability of malignancy in solitary pulmonary nodules: application to small radiologically indeterminate nodules [ J ]. Arch Intern Med, 1997, 157:849-855.
  • 9LiY, Chen KZ, Wang J. Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese people[ J]. Clinical Lung Cancer, 2011, 12(5): 313-319.
  • 10GouldMK, Ananth L, Barnett PG, et al. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules [ J ]. Chest, 2007, 131 ( 2 ) : 383-388.

共引文献43

同被引文献47

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部