期刊文献+

一种结合自适应惯性权重的混合粒子群算法 被引量:26

A Hybrid Particle Swarm Optimization Algorithm with Adaptive Inertia Weight
下载PDF
导出
摘要 粒子群算法(particle swarm optimization,PSO)是一种容易实现且高效的优化算法,但该算法对各种参数反应较为敏感.本文针对经典粒子群算法容易陷入局部最优的不足之处进行研究,提出对经典粒子群算法使用自适应惯性权重并引入模拟退火法的思想来解决经典粒子群优化算法容易陷入局部最优解的问题.仿真实验结果表明,本文提出的混合算法与经典粒子群算法相比,不仅能够避免寻优过程中陷入局部最优问题,而且还具有收敛速度快、成功次数高、稳定性及寻优结果好等特点. Particle swarm optimization algorithm is an optimization algorithm which is efficient and easy to implement, but the algorithm is more sensitive with various parameters. In this paper, we research the classical particle swarm optimization algorithm in the view of its shortcomings that is easy to fall into local optimum, and then puts forward the idea of using adaptive inertia weights and introducing the simulated annealing method to classical particle swarm optimization algorithms to solve the problem that local optimal solution of classical particle swarm optimization algorithm. Compared with the classical algorithm, the simulation results show that the proposed hybrid algorithm can not only avoid the local optimal solution in the process of particle swarm optimization but also has the characteristics of fast convergenee, high success times, stability and good results.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2016年第3期49-53,共5页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(61172149 61402132)
关键词 自适应 惯性权重 模拟退火法 粒子群优化 混合算法 self-adaptation inertia weight simulated annealing particle swarm optimization hybrid algorithm
  • 相关文献

参考文献17

  • 1INDIRA K, KANMANI S. Association Rule Mining Through A- daptive Parameter Control in Particle Swarm Optimization [ R ]. Berlin Heidelberg: Springer-Verlag, 2014.
  • 2JAMES Kennedy, RUSSELL C, EBERHART. A Dircrete Binary Version of the Particle Swarm Algorithm [ C ]//IEEE International Conference on Systems, 1997:4104 -4108.
  • 3SHI Yuhui, RUSSELL Eberhart. A Modified Particle Swarm Opti- mizer[ C ]//IEEE World Congress on Computational Intelligence, 1998:69 - 73.
  • 4周雅兰,王甲海,印鉴.一种基于分布估计的离散粒子群优化算法[J].电子学报,2008,36(6):1242-1248. 被引量:28
  • 5李丽,牛奔.粒子群算法[M].冶金工业出版社,2009:35-64.
  • 6纪震,廖惠连,吴青华.粒子群算法及应用[M].北京.科学出版社,2008:12-15.
  • 7LIU Dongsheng. Improved Genetic Algorithm Based on Simulated Annealing and Quantum Computing Strategy for Mining Association Rules[J]. Journal of Software, 2010, 11 (5) : 1243 - 1249.
  • 8刘爱军,杨育,李斐,邢青松,陆惠,张煜东.混沌模拟退火粒子群优化算法研究及应用[J].浙江大学学报(工学版),2013,47(10):1722-1730. 被引量:75
  • 9于承敏,郑丽萍.PSO算法求解PFSP问题研究进展[J].哈尔滨理工大学学报,2012,17(6):14-20. 被引量:2
  • 10满春涛,盛桂敏.改进的协同粒子群优化算法[J].哈尔滨理工大学学报,2010,15(6):51-53. 被引量:5

二级参考文献100

共引文献203

同被引文献238

引证文献26

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部