期刊文献+

一种基于TLD的顾客进店实时检测算法

A real time detection algorithm for customers based on TLD
下载PDF
导出
摘要 结合人脸检测算法和跟踪学习检测算法(Tracking Learning Detection,TLD)完成多个人脸的检测跟踪,用来实现对汽车4S店顾客的实时进店检测。由于采集图像序列帧率低,导致帧间人脸姿态变化大,容易出现目标丢失现象。本文采用Kalman滤波和最邻近数据关联方法,提出一种改进的基于TLD的顾客进店实时检测算法,有效改善了目标短暂丢失现象,增强了算法的鲁棒性。实验证明,该算法具有抵抗光线变化、小范围形变和短暂遮挡的优点,能够解决复杂环境中的实际问题。 This paper is mainly to complete the multi face detection and tracking based on face detection algorithm and TLD (Tracking Learning Detection) algorithm, to realize the real time detection of customers into the cars 4S shop. Due to the low frame rate image acquisition se- quence, resulting in inter face pose changes, prone to the phenomenon of missing target,this paper uses the Kalman filter and the nearest neighbor data association method, proposes a real time detection algorithm for customers based on TLD. So the detection algorithm is efficiently improved, and the robustness of the algorithm is enhanced. Experiments show that the algorithm has the advantages of resistance to light chan- ges, small deformation and transient occlusion. It can solve the problems in complex environment.
出处 《微型机与应用》 2016年第14期42-45,共4页 Microcomputer & Its Applications
关键词 跟踪学习检测 人脸检测 多目标跟踪 KALMAN 数据关联 tracking learning detection face detection multi-target tracking Kalman data association
  • 相关文献

参考文献6

二级参考文献35

  • 1KIM H K, KIM J D. Region-based shape descriptor invariant to rotation, scale and translation[J]. Signal Processing: Image Communication, 2000.16 ( 1 -2):87-92.
  • 2SCHOLKOPF B. Statistical learning and kernel methods[M]. Technology Report MSR_TR, 2002.
  • 3BADENAS J, BOBER M, PLA F. Motion and intensitybased segmentation and its application to traffic monitoring[C]. Proceedings of ICIAP 1310,1997:502-509.
  • 4LIN Y T, CHANG Y L. Tracking deformable objects with the Active Contour Model[C]. Proceedings IEEE (ICMCS 1997), 1997:608-609.
  • 5王江涛,杨静宇.遮挡情况下基于Kalman均值偏移的目标跟踪[J].系统仿真学报,2007,19(18):4216-4220. 被引量:30
  • 6Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4) : 13(1-45).
  • 7Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[ C ]//Proceedings of Interna- tional Joint Conference on Artificial Intelligence. Menlo Park, California: AAAI Press, 1981 : 674-679.
  • 8Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25(5): 564-577.
  • 9Lepetit V, Lagger P, Fua P. Randomized trees for real-time key- point recognition[ C]//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition. New York: IEEE Press, 2005 : 775-781.
  • 10Andriluka M, Roth S, Schiele B. People-tracking-by-detection and people-detection-by-tracking [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York : IEEE Press, 2008 : 1-8.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部