期刊文献+

一类具时滞的Liénard型方程的周期解 被引量:2

Periodic Solutions of a Class Liénard Equation with Delay
下载PDF
导出
摘要 考虑一类具时滞的 Liénard型方程x+f[x(t) ]x(t) +g[t,x(t-τ(t) ) ]=p(t) =p(t+T) ,利用重合度理论 ,获得了此方程至少存在一个 A kind of delay Liénard equation+f(t)+g[t,x(t-τ(t))]=p(t)=p(t+T),are consider, using the theory of coincidence degree, the sufficient conditions for its there being at least a Tperiodic solution is obtained.
作者 林文贤
出处 《工科数学》 2002年第3期24-27,共4页 Journal of Mathematics For Technology
关键词 LIÉNARD型方程 周期解 时滞 线性算子 充分条件 重合度理论 Liénard equation periodic solution, deviating a rgument
  • 相关文献

参考文献11

  • 1Villari G. Periiodic solutions f Lienard equation[J]. J. Math. Anal. Appl, , 1982, 86:376-386.
  • 2Mawhin J I.. An extension of theorenl of A.C. Lazer on forced nonlinear oscillation[J]. J, Math. Anal. Appl,1972,40:20-29.
  • 3Villari G. On the existence of periodic solutions of the Lienard equation[J]. Nonlinear Anal. , 1983, 7:71-78.
  • 4Omari P, Villari G and Zanolin F. Periodic solutions of the Lienard equation with one sided growth restrictions[J].J.Differential Equations, 198,3, 41:978-293.
  • 5Mawhin J I, and Ward J R. Periodic solutions of some forced Lienard differential equation at resonance[J]. Arch.Math., 1983, 41:337-351.
  • 6Nussbaum R D. Periodic solutions of some nonlinear, autonomous function differential equations [J]. J. differential Equations, 1973, 14, 360-394
  • 7lannacci R and Nkashama M N. On periodic solutions of forced second order differential equations with a deviating argument[C]. Lecture Notes in Math. , 1151, Springer-Verlag. 1984, 224-232.
  • 8Grafton R B. Periodic solutions of certain Lienard equation with delay[J]. J. Differential Equations. 1972. 11:519-527.
  • 9李永昆.具偏差变元的Liénard型方程的周期解[J].Journal of Mathematical Research and Exposition,1998,18(4):565-570. 被引量:35
  • 10Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations [C] . Lecture Notes in Math, ,Springer-Verlag, 1977, 568.

二级参考文献3

共引文献113

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部