期刊文献+

Natural Boundary Element Method for ParabolicEquations in an Unbounded Domain 被引量:1

无界区域抛物方程自然边界元方法(英文)
下载PDF
导出
摘要 In this paper we introduce an implementation for the efficient numericalsolution of exterior initial boundary value problem for parabolic equation. The problemis reformulated as an equivalent one on a boundary T using natural boundary reduction.The governing equation is first discretized in time, leading to a time-stepping scheme,where an exterior elliptic problem has to be solved in each time step. By Fourier ex-pansion, we derive a natural integral equation of the elliptic problem related to timestep and Poisson integral integral formula over exterior circular domain. Finite elementdiscretization of the natural integral equation is employed to solve this problem. Thecomputational aspects of this method are discussed. Numerical results are presented toillustrate feasibility and efficiency of our method. 本文应用自然边界元方法求解无界区域抛物型初边值问题。首先将控制方程对时间进行离散化,得到关于时间步长离散化的椭圆型问题。通过Fourier展开,导出相应问题的自然积分方程和Poisson积分公式。研究了自然积分算子的性质,并讨论了自然积分方程的数值解法,最后给出数值例子。从而解决了抛物型问题的自然边界归化和自然边界元方法。
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第2期177-188,共12页 数学研究与评论(英文版)
基金 National Natural Science Foundation of China(19701001)
关键词 parabolic problem natural boundary reduction exterior problem numer-ical implementation finite element. 无界区域 抛物方程 自然边界元方法 初边值问题 自然积分方程 积分算子 数值解法
  • 相关文献

参考文献12

  • 1FANG Kang.Differential verse,sintegral equations and finite versus infmite elements [J].Mathematica e Numerica Sinica(inChinese),1980,2(1): 100-105.
  • 2FANG Kang.Canonical boundary reduction and finite element method [C].Proceedings ofInternational Invitational Symposium on the Finite Element Method (1981,Heifei),SciencePress,Beijing,1982.330-352.
  • 3FANG Kang,YU De-hao.Canonical integral equations of eliptic boundary valueproblemsand their numerical solutions [C].Proceedings of China-France Symposium on theFiniteElement Method (1982,Beijing),Science Press,Beijing,1983,211-252.
  • 4FANG Kang.Finite element method and naturalboundary reduction [C].Proceedings oftheInternational Congress of Mathematicians,Warszawa,1983,1439-1453.
  • 5YU De-hao.Canonical integral equations of biharmonic elliptic boundary valueproblems [J].Mathematicae Numerica Sinica(in Chinese),1982,4(3): 330-336.
  • 6YU De-hao.Numerical solutions of harmonic and biharmonic canonical integralequations ininterior or exterior circlular [J].J.Comp.Math.,1983,1(1): 52-62.
  • 7YU De-hao.Coupling canonical boundary element method with FEM to solveharmonicproblem over cracked domain [J].J.Comp.Math.,1983,1(3):195-202.
  • 8YU De-hao.A direct natural coupling of BEM and FEM [C].Boundary ElementsXIII,C.A.Brebbia,G.S.Gipson eds.,Computational MechanicsPublications,Southampton,1991,995-1004.
  • 9YU De-hao.Mathematical Theory of Natural Boundary Element Method [M],PureMathe-matics and Applied Mathematics,No.26,Science Press(in Chinese),Beijing,1993.
  • 10COURANT R,HILBERT D.Methods of Mathematics Physics [M] (translated by Qian MinandGuo Dunren),Science Press(in Chinese),Beijing,1981.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部