期刊文献+

自适应压缩双边滤波算法

Adaptive compressive bilateral filtering
下载PDF
导出
摘要 为了提高压缩双边滤波算法的滤波效果,对其灰度方差参数值的设置加以改进,即使用自适应的参数值代替原有固定的参数值。对加噪图像进行小波分解,将分解得到的高频部分,分成相同大小的子图像,根据拉普拉斯快速估计算法估计各子块的噪声方差,并计算其平均值,然后利用灰度方差与噪声方差的线性关系计算灰度方差参数值。随机选取4幅灰度图像,添加噪声,测试改进算法。结果显示,改进后的算法比改进前的算法的图像的峰值信噪比更高,滤波效果更好。 In order to improve the performance of compressive bilateral filtering, its range parameters are modified and the adaptive parameters values are used to replace the original fixed parameters values. The image with noise is decomposed by wavelet and high-frequency part is then decomposed into sub-images of the same size. The noise variance of each sub-block are estimated according to the Laplace fast estimation algorithm, the average value is calculated, and then range parameters are calculated by using the linear relationship between range parameters and noise variance. Four grayscale images with noise are selected randomly to test the improved algorithm, Results show that its peak signal to noise ratio is higher in the improved algorithm and a better filtering performance is achieved.
出处 《西安邮电大学学报》 2016年第4期48-52,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金重点资助项目(61136002) 陕西省自然科学基金资助项目(2014JM8331 2014JQ5183 2014JM8307) 陕西省教育厅科学研究计划资助项目(2015JK1654)
关键词 自适应 压缩双边滤波 灰度方差 小波分解 adaptive, compressive bilateral filtering, range parameter, wavelet decomposition
  • 相关文献

参考文献12

  • 1ZHANG P X, LI F. A New Adaptive Weighted Mean Filter for Removing Salt-and-pepper Noise FJ/OL]. IEEE Signal Processing Letters, 2014, 21(10)~ 1280- 1283[2016-04-15~. http ://ieeexplore. ieee. org/stamp/ stamp, jsp? tp = ~arnumber = 6844033. DOI: 10. 1109/LSP. 2014. 2333012.
  • 2HSIEH M H, CHENGFC, SHIE MC, et al. Fast and Efficient Median Filter for Removing 1- 99~ Levels of Salt-and-pepper Noise in Images[J/OL~. En- gineering Applications of Artificial Intelligence, 2013, 26(4).. 1333-1338E2016-04-15~. http..//www, science- direct, com/science/article/pii/S0952197612002813. DOI~ 10. 1016/j. engappai. 2012.10. 012.
  • 3JAIN A, GUPTA R. Gaussian Filter Threshold Mod- ulation for Filtering Flat and Texture Area of an Image['C/0L7//2015 International Conference on Advances in Computer Engineering and Applications (ICA- CEA). Ghaziabad: IEEE, 2015:760-763 [2016-04- 15 1. http://dx, doi. org/10, ll09/ICACEA. 2015. 7164804.
  • 4吴成茂,胡伟,王辉.小波自适应阈值和双边滤波的图像去噪[J].西安邮电大学学报,2013,18(4):5-8. 被引量:6
  • 5CHEN J, BENESTY J, HUANG Y, et al. New In- sights into the Noise Reduction Wiener Filter[J/OL]. IEEE Transactions on Audio, Speech, and Language Processing, 2006,14 (4) : 1218-1234 [2016-04-151. ht- tp://ieeexplore, ieee. org/stamp/stamp, jsp? tp = ~arnumber = 1643650. DOI: 10. ll09/TSA. 2005. 860851.
  • 6TOMASI C, MANDUCHI R. Bilateral Filtering for Gray and Color Images [C/OL-~//Computer Vision, 1998. Sixth International Conference on. Bombay: IEEE, 1998:839-846 [2016-04-15]. http://dx, doi. org/10, ll09/ICCV. 1998. 710815.
  • 7YANG K H, FU S Y, SHI Y G. Other Approaches to Obtain the Fast and Piecewise-linear Bilateral Filter in 3D Space[C/OL]//2010 International Conference on Networking, Sensing and Control (ICNSC). IL Chica- go: IEEE, 2010: 133-13712016-04-153. http://dx. doi. org/10, ll09/ICNSC. 2010. 5461521.
  • 8XU G, TAN J, ZHONG J. An Improved Trilateral Filter for Image Denoising Using an Effective Impulse DetectorI-C/OL3//2011 4th International Congress onImage and Signal Processing ( CISP ). Shanghai.. IEEE, 2011~ 90-9412016-04-15]: http://dx, doi. org/ 10. 1109/CISP. 2011. 6100017.
  • 9PORIKLI F. Constant Time O (1) Bilateral Filtering [C/OL] //Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. AK Anchor- age:IEEE, 2008:1-8 [2016-04-15]. http..//dx, doi. org/10. 1109/CVPR. 2008. 4587843.
  • 10SUGIMOTO K, KAMATA S I. Compressive Bilateral Filtering[J/OL]. IEEE Transactions on Image Pro- cessing, 2015, 24(11):3357-33691-2016-04-15]. ht- tp://ieeexplore, ieee. org/stamp/stamp, jsp? tp ~arnumber = 7120121. DOI.. 10. ll09/TIP. 2015. 2442916.

二级参考文献14

  • 1胡昌华;李国华;周涛.基于MATLAB7.X的系统分析与设计:小波分析X的系统分析与设计:小波分析[M].西安:西安电子科技大学出版社,2008.
  • 2Donoho D L,Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,(03):425-455.
  • 3Donoho D L. De-noising by soft-thresholding[J].IEEE Transactions on Information theory,1995,(03):613-627.doi:10.1109/18.382009.
  • 4Chang S G,Yu B,Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,(09):1532-1546.doi:10.1109/83.862633.
  • 5Fathi A,Reza A,Naghsh-Nilchi. Efficient Image Denoising Method Based on a New Adaptive Wavelet Packet Thresholding Function[J].IEEE Transactions on Image Processing,2012,(09):3981-3990.
  • 6Vaseghi S V. Advanced Digital Signal Processing and Noise Reduction[M].New York:wiley,2005.101-115.
  • 7Joshi R L,Crump V J,Fisher T R. Image subband coding using arithmetic coded trellis coded quantization[J].IEEE Transactions on Circuits and Systems for Video Technology,1995,(06):515-523.doi:10.1109/76.475894.
  • 8LoPresto S M,Ramchandran K,Orchard M T. Image coding based on mixture modeling of wavelet coefficients and a fast estimation quantization framework[A].Snowbird,Utah,1997.221-230.
  • 9Mallat S. A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,(07):674-693.doi:10.1109/34.192463.
  • 10Yoo Y,Ortega A,Yu B. Imagesubband coding using cont ext based classification and adaptive quantization[J].IEEE Transactions on Image Processing,1999,(12):1702-1715.doi:10.1109/83.806617.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部