摘要
为了提高压缩双边滤波算法的滤波效果,对其灰度方差参数值的设置加以改进,即使用自适应的参数值代替原有固定的参数值。对加噪图像进行小波分解,将分解得到的高频部分,分成相同大小的子图像,根据拉普拉斯快速估计算法估计各子块的噪声方差,并计算其平均值,然后利用灰度方差与噪声方差的线性关系计算灰度方差参数值。随机选取4幅灰度图像,添加噪声,测试改进算法。结果显示,改进后的算法比改进前的算法的图像的峰值信噪比更高,滤波效果更好。
In order to improve the performance of compressive bilateral filtering, its range parameters are modified and the adaptive parameters values are used to replace the original fixed parameters values. The image with noise is decomposed by wavelet and high-frequency part is then decomposed into sub-images of the same size. The noise variance of each sub-block are estimated according to the Laplace fast estimation algorithm, the average value is calculated, and then range parameters are calculated by using the linear relationship between range parameters and noise variance. Four grayscale images with noise are selected randomly to test the improved algorithm, Results show that its peak signal to noise ratio is higher in the improved algorithm and a better filtering performance is achieved.
出处
《西安邮电大学学报》
2016年第4期48-52,共5页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金重点资助项目(61136002)
陕西省自然科学基金资助项目(2014JM8331
2014JQ5183
2014JM8307)
陕西省教育厅科学研究计划资助项目(2015JK1654)
关键词
自适应
压缩双边滤波
灰度方差
小波分解
adaptive, compressive bilateral filtering, range parameter, wavelet decomposition